Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T07:57:01.091Z Has data issue: false hasContentIssue false

The Effect of Hydrogen/ Deuterium Introduction on Photoluminescence of 3C-SiC Crystals

Published online by Cambridge University Press:  10 February 2011

B. K. Lee
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati, OH 45221-0030
A. J. Steckl
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati, OH 45221-0030
J. M. Zavada
Affiliation:
Army Research Office, Research Triangle Park, NC 27709
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
Get access

Abstract

The effect of the incorporation and annealing of deuterium in 3C-SiC on its photoluninescence is reported. A 3C-SiC crystal has been implanted with 100 keV deuterium and subsequently annealed at temperatures between 1015 °C and 1220 °C for 1 to 5 minutes. SIMS depth profiles indicate hydrogen is strongly trapped by defects generated through ion bombardment, but a gradual damage repairing occurs during annealing. Photoluminescence was measured with 488 nm Ar laser excitation for sample temperatures from 89 K to 400 K. The PL peak wavelength of 540 nm at room temperature has shifted to 538 nm at 89 K. The peak PL intensity decreases with measurement temperature while its full width at half maximum (FWHM) exhibits an increasing trend. PL data were taken at five annealing stages. The post-implantation peak PL intensity and its integrated area increase initially with annealing temperature and time. After the final annealing at 1218 °C for 2 minute, PL intensity and its integrated area exhibit a decrease in level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Patrick, L., Choyke, W. J., Physical Review B, 8 (4), 1660, (1973).Google Scholar
[2] Zavada, J. M., Wilson, R. G., Abernathy, C. R., Pearton, S. J., Appl. Phys. Lett., 64 (20), 2724 (1994).Google Scholar
[3] Wilson, R. G., Pearton, S. J., Abernathy, R., Zavada, J. M., J. Vac. Sci. Technol. A, 13 (3), 719 (1995).Google Scholar
[4] Pearton, S. J., Abernathy, C. R., Mackenzie, J. D., Wilson, R. G., Ren, F., Zavada, J. M., Electronics Lett., 31 (40), 327 (1995).Google Scholar
[5] Pearton, S. J., Shul, R. J., Wilson, R. G., Ren, F., Zavada, J. M., Abernathy, C. R., Vartuli, C. B., Lee, J. W., Mileham, J. R., Mackenzie, J. D., J. Electronic Materials, 25 (5), 845 (1996).Google Scholar
[6] Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Lee, J. W., Mackenzie, J. D., Wilson, R. G., Shul, R. J., Ren, F., Zavada, J. M., J. Vac. Sci. Technol. A, 14 (3), 831 (1996).Google Scholar
[7] Steckl, A. J., Devrajan, J., Tlali, S., Jackson, H. E., Tran, C., Gorin, S. N., Ivanova, L. M., Appl. Phys. Lett., 69 (25), 3824 (1996).Google Scholar
[8] Linnarsson, M. K., Doyle, J. P., Svensson, B. G., Mat. Res. Soc. Symp. Proc., 423, 625 (1996).Google Scholar
[9] Ren, F., Grow, J. M., Bhaskaran, M., Wilson, R. G., Pearton, S. J., J. Electronic Materials, 26 (3), 198 (1997).Google Scholar
[10] Zavada, J. M., Wilson, R. G., Ren, F., Pearton, S. J., Davis, R. F., Solid State Electronics, 41 (5), 677 (1997).Google Scholar