Article contents
Effect of High Temperature Single and Multiple AlN Intermediate Layers on N-polar and Ga-polar GaN Grown by Molecular Beam Epitaxy
Published online by Cambridge University Press: 21 March 2011
Abstract
Wurtzite GaN samples containing one, three and five 4nm thick high temperature (HT) AlN Interlayers (IL) have been grown on (0001) sapphire substrates by plasma-assisted molecular beam epitaxy (PAMBE). N-polar as well as Ga-polar thin films have been characterized by x-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and electrical measurements.
All samples under consideration show excellent AFM rms surface roughness below 1nm. Previously, we published a reduction of the threading dislocation (TD) density by a factor of seven due to the introduction of one AlN-IL. When introducing multiple AlN-IL a reduction by a factor of 5.2 is achieved.
Hall measurements show a rise in electron mobility due to possible 2DEG formation at the interface between GaN and the AlN-ILs. Significant growth mode differences between Ga-polar and N-polar samples result in drastically higher electron mobility values for N-polar material. For N-polar samples the exceptional mobility increase from 68 (no AlN-IL) to 707 cm2/Vs (one AlN-IL) as well as the extremely low intrinsic carrier density of 1 x 1017 cm-3 prove the applicability of AlN barriers in inverted FET devices.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2002
References
- 1
- Cited by