No CrossRef data available.
Published online by Cambridge University Press: 11 May 2015
The wear phenomenon may occur for a variety of work conditions in the material. It causes losses in terms of time and costs in the components which are used for heavy machinery due to its re-pair or even replacement. It is important to select suitable materials that exhibit high-quality weldability and resistance to abrasive wear such as the high strength low alloy (HSLA) steel grade 950A. Therefore, it is necessary to study the wear behavior of this kind of steel after components are joined by multi-pass gas metal arc welding (GMAW) process, specifically on the heat affected zone (HAZ). The aim of this research was to evaluate wear resistance by pin on disc test and hardness on heat affected zone of HSLA steel plates with thickness of 14 mm joined by using GMAW process varying different parameters as wire feed speed and voltage. The influence of microstructural features such as carbide precipitation on wear behavior and hardness was investigated using optical microscopy (OM) and scanning electron microscopy (SEM). The results show that microstructure is modified by the heat input of the welding process, affecting the material properties and causing more susceptibility to wear on the welded area.