Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T18:00:48.820Z Has data issue: false hasContentIssue false

Effect of Filament Bias on the Properties of Amorphous and Nanocrystalline Silicon from Hot-Wire Chemical Vapor Deposition

Published online by Cambridge University Press:  10 February 2011

H.N. Wanka
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
R. Brüggemann
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
C. Köhler
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
I. Zrinscak
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
M.B. Schubert
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
Get access

Abstract

At the high temperatures during hot-wire assisted chemical vapor deposition, ther- mal emission of electrons from the filament occurs. We studied the effect of filament bias, and thus the filament-to-substrate current, on the structural, electronic and optical properties of amorphous and nanocrystalline silicon deposited by this method. The current drawn by the substrate can be varied by many orders of magnitude as thermally emitted electrons are increasingly collected with applied bias voltage. The crystallinity of the nanocrystalline samples is not affected by the bias voltage. The defect density in amorphous silicon is affected by the electron bombardment at high bias voltage only, for which we also find a significant reduction in the mobility-lifetime product from steady-state photoconductivity.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Herold, H., Lecture notes: Plasmaphysik, Universitcit Stuttgart, unpublished.Google Scholar
2 Heintze, M., Zedlitz, R., Wanka, H. N., and Schubert, M. B., J. Appl. Phys. 79, 2699 (1996).Google Scholar
3 Wanka, H.N., Hierzenberger, A., and Schubert, M.B., Mat. Res. Soc. Symposium Proceedings No. 420, ed. Schiff, E. A. et al. (MRS, Pittsburgh, 1997), pp. 295300.Google Scholar
4 Campbell, I. H. and Fauchet, P. M., Solid State Comm. 58, 739 (1986).Google Scholar
5 for example Wanka, H. N., Ph. D. Thesis, Universitit Stuttgart (1998).Google Scholar
6 Briiggemann, R., Hierzenberger, A., Wanka, H. N., and Schubert, M. B., these proceedings.Google Scholar
7 Brüggemann, R. et al. , J. Non-Cryst. Solids, in print, 1998.Google Scholar
8 Beyer, W. and Hoheisel, M., Solid State Comm. 47, 573 (1983).Google Scholar
9 Koĉka, J., Nebel, C. E., and Abel, C.-D., Philos. Mag. B 63, 221 (1991).Google Scholar
10 Unold, T. and Mahan, A. H., Mat. Res. Soc. Symposium Proceedings No. 467, ed. Wagner, S. et al. (MRS, Pittsburgh, 1997), pp. 663668.Google Scholar
11 Wanka, H. N., Zedlitz, R., Heintze, M., and Schubert, M. B., in Proc. 13th Europ. Photovoltaic Solar Energy Conf., 1995, edited by Freiesleben, W. et al. (Stephens & Associates, Bedford, UK, 1995), p. 1753.Google Scholar