Published online by Cambridge University Press: 31 January 2011
Pure and Cu-doped quantum dots of ZnSe@ZnS were synthesized in aqueous phase using microwave irradiation at 140 °C. X-ray diffraction analyses suggested the development of a ZnSe-ZnS structure. UV-vis measurements evidenced that the presence of Cu species in quantum dots caused the blue shift of exciton peaks with respect to pure, i.e. non doped ones. Photoluminescence spectra of quantum dots synthesized at Zn/Cu mole ratios of 1/0.001 and 1/0.005 exhibited a very strong emission peak centered on ˜ 515 nm. On the contrary, a weak emission peak was observed at 412 nm in pure ZnSe@ZnS quantum dots. The observed emission at 515 nm was attributed to the internal doping of Cu species, which should have induced d-d transitions in the host lattice. Quenching of the luminescence at 515 nm was observed for nominal Cu concentrations above 0.005 mM.