Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-07T21:14:01.397Z Has data issue: false hasContentIssue false

Effect of Crystalline Structure and Impurity Content of C60 Thin Films on the Order/Disorder Phase Transition

Published online by Cambridge University Press:  21 March 2011

Eugene A. Katz
Affiliation:
The National Solar Energy Center, The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, 84990 Israel
David Faiman
Affiliation:
The National Solar Energy Center, The Jacob Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, 84990 Israel Department of Physics, Ben-Gurion University of the Negev, Beersheba, 84105 Israel
Svetlana Shtutina
Affiliation:
Department of Physics, Ben-Gurion University of the Negev, Beersheba, 84105 Israel
Aleksandra P. Isakina
Affiliation:
Verkin Institute for Low Temperature Physics & Engineering, National Academy of Science of Ukraine, 47 Lenin Ave., Kharkov 310164, Ukraine
Konstantin A. Yagotintsev
Affiliation:
Verkin Institute for Low Temperature Physics & Engineering, National Academy of Science of Ukraine, 47 Lenin Ave., Kharkov 310164, Ukraine
Get access

Abstract

Near the temperature of 260 K, C60 crystal is known to undergo a first order phase transition, associated with changes in molecular rotations. The present paper reports the effect of the crystalline structure and impurity content of C60 thin films on their structural behavior near this phase transition. Polycrystalline C60 films with different grain sizes and oxygen content were obtained by varying the conditions of their vacuum deposition and post-grown exposure. Temperature-resolved X-ray diffraction in the range 300 – 15 K was used to determine the lattice parameter and its changes near the phase transition temperature. Decrease in grain sizes and increase in oxygen content of the films are found to lead to a gradual reduction in the discontinuity in lattice parameter and the transition temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tycko, R., Dabbagh, G., Fleming, R.M., Haddon, R.C., Makhia, A.V. and Zahurak, S.M., Phys. Rev. Lett. 67, 1886 (1991).Google Scholar
2. Heiney, P.A., Fisher, J.E., McGhhie, A.R., Romanow, W.J., Denestejn, A.M., McCauley, J.P. Jr, Smith, A.B. III and Cox, D.E., Phys. Rev. Lett. 66, 2911 (1991).Google Scholar
3. Kasatani, H., Terauchi, H., Hamanaka, Y. and Nakashima, S., Phys. Rev. B 47, 4022 (1993).Google Scholar
4. Fomenko, S., Natsik, V. D., Lubenets, S. V. Lirtsman, V. G., Aksenova, N. A., Isakina, A. P., Prokhvatilov, A. P., Strzhemechny, M. A. and Ruoff, R. S., Low Temp. Phys. 21, 364 (1995).Google Scholar
5. Faiman, D., Goren, S., Katz, E., Koltun, M., Melnik, N., Shames, A. and Shtutina, S., Thin Solid Films 295, 283 (1997).Google Scholar
6. Katz, E.A., US Patent No: 5,876,790 (1999).Google Scholar
7. Katz, E.A., Faiman, D., Shtutina, S. and Isakina, A., Thin Solid Films 368, 49(2000).Google Scholar
8. Katz, E.A., Faiman, D., Shtutina, S., Isakina, A., Yagotintsev, K. and Iakoubovskii, K., in Polycrystalline Semiconductors VI - Bulk Materials, Thin Films and Devices, edited by Bonnaud, O., Mohammed-Brahim, T., Strunk, H.P. and Werner, J.H. (Solid State Phenomena, Scitech Publ., Uetticon am See, Switzerland, 2001) (in press).Google Scholar
9. Aksenova, N. A., Isakina, A. P., Prokhvatilov, A. I., Strzhemechny, M. A., Varyukhin, V. N., in Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials, edited by Kadish, K.M. and Ruoff, R.S. (The Electrochemical Society Inc., PV 94–24, Pennington, 1994, p.p. 15431548.Google Scholar
10. Matsuishi, K., Tada, K., Onari, S., Arai, T., Philosophical Magazine B 70, 795 (1994).Google Scholar
11. Yan, F., Wang, Ye-N., Gu, M., J. Phys.: Condens. Matter 10, 6875 (1998).Google Scholar
12. Yoneda, Y., Sakaue, K., Terauchi, T., J. Phys.: Condens. Matter 9, 2851 (1997).Google Scholar
13. Glebov, A., Senz, V., Toennies, J.P., Gensterblum, G., J. Appl. Phys. 82, 2359 (1997).Google Scholar
14. Fartash, A., Phys. Rev. B 54, 17215 (1996).Google Scholar
15. Assink, A., Schirber, J., Loy, D., Morosin, B. and Carlson, G.A., J. Mat. Res. 7, 2136 (1992).Google Scholar
16. Katz, E.A., Shames, A.I., Faiman, D., Shtutina, S., Cohen, Y., Goren, S., Kempinski, W. and Piekara-Sady, L., Physica B 273&274, 932 (1999).Google Scholar
17. Katz, E.A., Faiman, D., Shtutina, S., Froumin, N., Polak, M., Isakina, A.P., Yagotintsev, K.A., Strzhemechny, M.A., Strzhemechny, Y. M., Zaitsev, V.V. and Schwarz, S.A.. Physica B (2001) (in press).Google Scholar