Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T08:44:33.439Z Has data issue: false hasContentIssue false

Effect of Cr Addition on the Phase Equilibria of the Nb-Si System

Published online by Cambridge University Press:  26 February 2011

B. P. Bewlay
Affiliation:
[email protected] Global Research CenterSchenectady NY 12301United States
Y. Yang
Affiliation:
[email protected], CompuTherm LLC, 437 S. Yellowstone Dr., Madison, WI, 53719, United States
R. L. Casey
Affiliation:
[email protected], GE Global Research Center, Schenectady, NY, 12301, United States
M. R. Jackson
Affiliation:
[email protected], GE Global Research Center, Schenectady, NY, 12301, United States
Y. A. Chang
Affiliation:
[email protected], University of Wisconsin-Madison, Madison, WI, 53706, United States
Get access

Abstract

Nb-silicide based in-situ composites are promising materials for future high-temperature structural applications. Nb-silicide composites are typically alloyed with Hf, Ti, Cr, and Al to provide a balance of mechanical and environmental properties. A thermodynamic description of the Nb-Cr-Si system has been developed previously in literature based on reported isothermal sections. According to the previously calculated phase diagrams, selected alloys were directionally solidified. The as-solidified microstructures could not be interpreted using the liquidus projection calculated from the existing thermodynamic descriptions. Therefore, an improved thermodynamic description was developed by incorporating the new experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bewlay, B. P., Jackson, M. R. and Subramanian, P. R., Journal of Metals 51(4), 3236 (1999).Google Scholar
2. Bewlay, B. P., Jackson, M. R. and Lipsitt, H. A., Metall. and Mater. Trans. 279, 38013808 (1996).Google Scholar
3. Mendiratta, M. G., Lewandowski, J. J. and Dimiduk, D. M., Metall. Trans. 22A, 15731581 (1991).Google Scholar
4. Jackson, M. R., Bewlay, B. P., Rowe, R. G., Skelly, D. W. and Lipsitt, H. A., J. of Metals 48(1), 3844 (1996).Google Scholar
5. Schlesinger, M. E., Okamoto, H., Gokhale, A. B. and Abbaschian, R., Journal of Phase Equilibria 14(4), 502–9 (1993).Google Scholar
6. Yang, Y., Chang, Y. A., Zhao, J.-C. and Bewlay, B. P., Intermetallics 11(5), 407415 (2003).Google Scholar
7. Goldschmidt, H. J. and Brand, J. A., Journal of the Less-Common Metals 3, 3443 (1961).Google Scholar
8. Zhao, J.-C., Jackson, M. R. and Peluso, L. A., Acta Materialia 51(20), 63956405 (2003).Google Scholar
9. Shao, G., Intermetallics Volume Date 2005, 13(1), 6978 (2004).Google Scholar
10. Yang, Y. and Chang, Y. A., private communication, 2004, University of Wisconsin-Madison.Google Scholar
11. Geng, J., Shao, G. and Tsakiropoulos, P., Intermetallics 14(7), 832837 (2006).Google Scholar
12. David, N., Cartigny, Y., Belmonte, T., Fiorani, J. M. and Vilasi, M., Intermetallics 14(4), 464473 (2006).Google Scholar
13. Bewlay, B. P., Yang, Y. and Chang, Y. A., Z. Metallkunde., to be submitted (2006).Google Scholar
14. Yang, Y., Bewlay, B. P. and Chang, Y. A., Intermetallics, to be submitted (2006).Google Scholar
15. Du, Y. and Schuster, J. C., Scandinavian Journal of Metallurgy 31(1), 2533 (2002).Google Scholar
16. Costa, N., Joaquim, G., Fries, S. G., Lukas, H. L., Gama, S. and Effenberg, G., CALPHAD 17(3), 219–28 (1993).Google Scholar
17. Pandat 6.0m-Phase Diagram Calculation Software for Multicomponent Systems, Computherm LLC, 437S, Yellowstone Dr., Suite 217, Madison, WI 53719, (2006).Google Scholar
18. Scheil, E., Metallkunde, Z.. 34, 70 (1942).Google Scholar