Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:26:48.767Z Has data issue: false hasContentIssue false

Effect of Atomic Bonding on Defect Production in Collision Cascades

Published online by Cambridge University Press:  15 February 2011

K. Nordlund
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, EL 61801, USA
R. S. Averback
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, EL 61801, USA
T. Diaz de la Rubia
Affiliation:
Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
Get access

Abstract

We study the mechanisms of damage production during ion irradiation using molecular dynamics simulations of 400 eV -10 keV collision cascades in four different materials. The materials Al, Si, Cu and Ge are contrasted to each other with respect to the mass, melting temperature and crystal structure. The results show that the crystal structure clearly has the strongest effect on the nature of the damage produced, and elucidate how the open crystal structure affects the nature of defects produced in silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Averback, R. S., J. Nucl. Mat. 216, 49 (1994).Google Scholar
Caturla, M.-J., Díaz de la Rubia, T., and Margués, L. A., Phys. Rev. B 54, 54 (1996).Google Scholar
3. Diaz de la Rubia, T. and Gilmer, G. H., Phys. Rev. Lett. 74, 2507 (1995).Google Scholar
4. Nordlund, K., Comput. Mater. Sci. 3, 448 (1995).Google Scholar
5. Stillinger, F. H. and Weber, T. A., Phys. Rev. B 31, 5262 (1985).Google Scholar
6. Ding, K. and Andersen, H. C., Phys. Rev. B 34, 6987 (1986).Google Scholar
7. Wang, Z. Q. and Stroud, D., Phys. Rev. B 38, 1384 (1988).Google Scholar
8. Daw, M. S., Foiles, S. M., and Baskes, M. I., Mat. Sci. Rep. 9, 251 (1993).Google Scholar
9. Ercolessi, F. and Adams, J. B., Europhys. Lett. 26, 583 (1994).Google Scholar
10. Sabochick, M. J. and Lam, N. Q., Phys. Rev. B 43, 5243 (1991).Google Scholar
11. Nordlund, K., Runeberg, N., and Sundholm, D., submitted for publication in Phys. Rev. B (1997).Google Scholar
12. Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).Google Scholar
13. Keinonen, J., Arstila, K., and Tikkanen, P., Appl. Phys. Lett. 60, 228 (1992).Google Scholar
14. Ziegler, J. F., SRIM-96 computer code, private communication.Google Scholar
15. Nordlund, K. and Averback, R. S., submitted for publication in Appl. Phys. Lett. (1997).Google Scholar
16. Nordlund, K. and Averback, R. S., submitted for publication in Phys. Rev. B (1996).Google Scholar
17. See e.g. Paine, B. M. and Averback, R. S., Nucl. Instr. Meth. Phys. Res. B 7/8, 666 (1985).Google Scholar