Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:28:52.018Z Has data issue: false hasContentIssue false

Effect of Additional HCl on the Surface Morphology of High Quality GaN on Sapphire by HVPE

Published online by Cambridge University Press:  21 March 2011

X.Q. Xiu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P. R. China
R. Zhang
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P. R. China
D.Q. Lu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P. R. China
L. Gu
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P. R. China
B. Shen
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P. R. China
Y. Shi
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P. R. China
Y.D. Zheng
Affiliation:
Department of Physics, Nanjing University, Nanjing 210093, P. R. China
Get access

Abstract

The effect of introduction of additional HCl on the surface morphology and structural properties of hydride vapor phase epitaxy grown GaN during growth is investigated, and high quality GaN with smooth surface on sapphire is obtained by adding the additional HCl into the HVPE reactor. The result is attributed to the control of polarity of GaN films during growth. The additional HCl altered the equilibrium at the GaN growth front, and the reversible reaction decreased the nucleation density or growth rate. Further, lower growth rate promote the surface diffusion and the coalescence over (0001) plane. Additional HCl may improve the surface morphology by suppressing the (000-1) polarity growth in the initial stage of the growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sumiya, M., Yoshimura, K., Ito, T., Ohtsuka, K., Fuke, S., Mizuno, K., Yoshimoto, M., Koinuma, H., Ohtomo, A., and Kawasaki, M., J. Appl. Phys. 88, 1158 (2000)10.1063/1.373791Google Scholar
2. Nowak, G., Krukowski, S., Grzegory, I., Porowski, S., Baranowski, Jacek M., Pakula, K., and Zak, J., MRS Internet J. Nitride Semicond. Res. 1, 5 (1996).Google Scholar
3. Keller, S., Keller, B. P., Wu, Y.-F., Heying, B., Kapolinek, D., Speck, J. S., Mishra, U. K., and Denbaars, S. P., Appl. Phys. Lett. 68, 1525 (1996).10.1063/1.115687Google Scholar
4. Parillaud, O., Wagner, V., BuKhlmann, H.J., Ilegems, M., MRS Internet J. Nitride Semicond. Res. 3, 40 (1998).10.1557/S1092578300001125Google Scholar
5. Hellman, E. S., MRS Internet J. Nitride Semicond. Res. 3. 11 (1998)Google Scholar
6. Sumiya, M., Yoshimura, K., Ohtsuka, K. and Fuke, S., Appl. Phys. Lett. 76, 2098 (2000)Google Scholar
7. Piffault, N., Gil, E., Leymarie, J., Monier, C., Clark, S. A., Anderson, N., Cadoret, R., Vasson, A. and Vasson, A. M., J. Cryst. Growth, 135, 11 (1994).10.1016/0022-0248(94)90720-XGoogle Scholar
8. Gil-Lafon, E., Piffault, N., and Cadoret, R., J. Cryst. Growth, 151, 80 (1995).10.1016/0022-0248(95)00023-2Google Scholar
9. Sumiya, M., Kawasaki, M., Kocka, J., and Koinuma, H., Jpn. J. Appl. Phys., Part 2 34, L97 (1995).10.1143/JJAP.34.L97Google Scholar
10. Sumiya, M., Ohnishi, T., Tanaka, M., Ohtomo, A., Kawasaki, M., Yoshimoto, M., Koinuma, H., Ohtsuka, K. and Fuke, S. MRS Internet J. Nitride Semicond. Res. G6.23 (1999).Google Scholar