Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T22:35:25.105Z Has data issue: false hasContentIssue false

Effect of 3d Transition Metals Addition on the Ferroelectric Properties in Bi Ferrite Thin Films

Published online by Cambridge University Press:  01 February 2011

Hiroshi Naganuma
Affiliation:
[email protected], Tokyo University of Science, Facalty of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan, +81-3260-4272-2442, +81-3-3260-4772
Jun Miura
Affiliation:
[email protected], Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
Soichiro Okamura
Affiliation:
[email protected], Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
Get access

Abstract

Cr, Mn, Co, Ni and Cu of 5 at % s added BiFeO3 films were fabricated by chemical solution deposition on 111-textured Pt/Ti/SiO2/Si(100) substrates. Only the diffraction peaks attributed to BiFeO3 structure could obtain except the Ni and Cr additions. The BiFeO3 films became almost amorphous by adding Ni, and non ferroelectric Bi7CrO12.5 phase was formed by adding Cr. AFM images indicated the surface morphology of the films was drastically changed by the additives. The leakage current was reduced by adding Mn, Cu and Co, although the electric coercive field increased in the case of Co addition. Therefore, it could be concluded that Mn and Cu additives improved not only the leakage current properties but also the ferroelectric properties in the course of CSD process. It should be noted that this is the first report showing the improvement of ferroelectricity of BiFeO3 films by adding Cu.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wang, J., Neaton, J. B., Zheng, H., Nagarajan, V., Ogale, S. B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D. G., Waghmare, U. V., Spaldin, N. A., Rabe, K. M., Wuttig, M., and Ramesh, R., Science 299, 1719 (2003).Google Scholar
2. Yun, K. Y., Noda, M. and Okuyama, M., Appl. Phys. Lett. 83, 3981 (2003).Google Scholar
3. Zhao, T., Scholl, A., Zavliche, F., Lee, K., Barry, M., Doran, A., Cruz, M. P., Chu, Y. H., Ederer, C., Spaldin, N. A., Das, R. R., Kim, D. M., Baek, S. H., Eom, C. B. and Ramesh, R., Nature Material 5, 823 (2006).Google Scholar
4. Neaton, J. B., Ederer, C., Waghmare, U. V., Spaldin, N. A., and Rabe, K. M., Phys. Rev. B 71, 014113 (2005).Google Scholar
5. Uchida, H., Ueno, R., Funakubo, H., and Koda, S., J. Appl. Phys. 100, 014106 (2006).Google Scholar
6. Naganuma, H., Inoue, Y. and Okamura, S., Integrated Ferroelectrics in press.Google Scholar
7. Qi, X., Dho, J., Tomov, R., Blamire, M. G. and -Driscoll, J. L. M., Appl. Phys. Lett. 86, 062903 (2005).Google Scholar
8. Wang, Y. and Nan, C.-W., Appl. Phys. Lett. 89, 052903 (2006).Google Scholar
9. Kim, J. K., Kim, S. S., and Kim, W.-J., Bhalla, A. S. and Guo, R., Appl. Phys. Lett. 88, 132901 (2006).Google Scholar
10. Singh, S. K., Sato, K., Maruyama, K. and Ishiwara, H., Jpn. J. Appl. Phys. 45, L1087 (2006).Google Scholar
11. Singh, S. K., Ishiwara, H., and Maruyama, K., Appl. Phys. Lett. 88, 262908 (2006).Google Scholar
12. Naganuma, H., Miura, J. and Okamura, S., J. Electro Ceram. in press.Google Scholar
13. Gao, F., Cai, C., Wang, Y., Dong, S., Qiu, X. Y., Yuan, G. L., Liu, Z. G. and Liua, J.-M., J. Appl. Phys. 99, 094105 (2006).Google Scholar
14. for example; Wang, J., Zheng, H., Ma, Z., Prasertchoung, S., Wuttig, M., Droopad, R., Yu, J., Eisenbeiser, K., and Ramesh, R., Appl. Phys. Lett. 85, 2574 (2004)., R. Ueno, S. Okaura, H. Funakubo and K. Saito, Jpn. J. Appl. Phys. 44, L1231 (2005).Google Scholar
15. Naganuma, H., Shimura, N., Miura, J., Shima, H., Yasui, S., Nishida, K., Katoda, T., Iijima, T., Funakubo, H. and Okamura, S., J. Appl. Phys, in press.Google Scholar