Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:41:43.079Z Has data issue: false hasContentIssue false

Eels Imaging of Biological Materials

Published online by Cambridge University Press:  21 February 2011

R.D. Leapman
Affiliation:
Biomedical Engineering and Instrumentation Program, National Center for Research Resources, National Institutes of Health, Bethesda, MD 20892
S. Sun
Affiliation:
Biomedical Engineering and Instrumentation Program, National Center for Research Resources, National Institutes of Health, Bethesda, MD 20892
J.A. Hunt
Affiliation:
Gatan R & D, Pleasanton, CA 94566
S.B. Andrews
Affiliation:
Laboratory of Neurobiology, National Institute for Neurological Diseases and Stroke National Institutes of Health, Bethesda, MD 20892
Get access

Abstract

Parallel-detection electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope provides a very sensitive means of detecting specific elements in biological systems. By analyzing EELS spectrum-image data recorded from rapidly-frozen and cryosectioned tissue it is possible to map quantitatively the distribution of the biologically important element, calcium, which is typically present at concentrations of only a few parts per million in cellular structures some tens of nanometers in diameter. A significant improvement (factor of four) in calcium detectability has been demonstrated for EELS compared with energy-dispersive x-ray spectroscopy. The spectrum-imaging technique has also been applied to map water distributions in hydrated biological specimens by utilizing the valence electron excitations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Isaacson, M.S. and Johnson, D.E., Ultramicroscopy, 1, 33 (1975).CrossRefGoogle Scholar
2. Shuman, H., Ultramicroscopy, 6, 163 (1981); H. Shuman and P. Kruit, Rev. Sci. Instrum., 56, 231 (1985).Google Scholar
3. Leapman, R.D. and Andrews, S.B., J. Microsc., 165, 225 (1992).Google Scholar
4. Leapman, R.D. and Newbury, D.E., Analytical Chem., 65, 2409 (1993).Google Scholar
5. Krivanek, O.L., Mory, C., Tencé, M. and Colliex, C., Microsc. Microanal., Microstruct., 2, 257 (1991).Google Scholar
6. Jeanguillaume, C. and Colliex, C., Ultramicroscopy, 28, 252 (1989).Google Scholar
7. Hunt, J.A. and Williams, D.B., Ultramicroscopy, 38, 47 (1991).CrossRefGoogle Scholar
8. Botton, G. and L'Espérance, G., J. Microsc., in press (1993).Google Scholar
9. Balossier, G., Thomas, X., Michel, J., Wagner, D., Bonhomme, P., Ploton, D., Bonhomme, A., and Pinon, J.M., Microsc. Microanal., Microstruct., 2, 531 (1991).Google Scholar
10 Sun, S., Shi, S., Hunt, J.A. and Leapman, R.D., to be published (1994).Google Scholar
11. Isaacson, M.S., in Principles and Techniques of Electron Microscopy. VII, edited by Hayat, M.A. (Van Nostrand-Reinhold, New York) p. 1.Google Scholar
12. Hunt, J.A., Leapman, R.D. and Williams, D.B., Microbeam Analysis 2, S272 (1993).Google Scholar
13. Hitchcock, A., Urquhart, S. and Rightor, E., J. Phys. Chem., 96, 96 (1992).Google Scholar
14. Sarikaya, M. and Aksay, I., Proc. 51st Annual Meeting of Microscopy Society of America, San Francisco Press, p. 500 (1993).Google Scholar
15. Wall, J.S. and Hainfeld, J.F., Ann. Rev. Biophys. Biophys. Chem., 15, 355 (1986).CrossRefGoogle Scholar
16. Krivanek, O.L., Ahn, C.C. and Keeney, R.B., Ultramicroscopy, 22, 103 (1987).Google Scholar
17. Andrews, S.B. and Leapman, R.D., Microbeam Analysis, San Francisco Press, p. 85 (1989).Google Scholar
18. Leapman, R.D. and Andrews, S.B., J. Microsc, 161, 3 (1991).Google Scholar
19. Kundmann, M., Chabert, X., Truong, K. and Krivanek, O.L. (1990) EL/P software for Macintosh II computer, Gatan Inc., 6678 Owens Dr., Pleasanton, CA 94566, USA.Google Scholar
20. Leapman, R.D. and Omberg, R.L., Ultramicroscopy, 24, 251 (1988).Google Scholar
21. Shuman, H. and Somlyo, A.P., Ultramicroscopy, 21, 23 (1987).Google Scholar
22. Wang, Y.-Y., Ho, R., Shao, Z. and Somlyo, A.P., Ultramicroscopy, 41, 11 (1992).Google Scholar
23. Bonnet, N., Michel, J., Wagner, D. and Balossier, G., Ultramicroscopy, 41, 105 (1992).Google Scholar
24. Schattschneider, P. and Jonas, P., Ultramicroscopy, 49, 179 (1993).CrossRefGoogle Scholar
25. Leapman, R.D., in Transmission Electron Energy Loss Spectrometry in Materials Science, edited by Ahn, C., Disko, M. and Fultz, B. (Minerals Metals Materials Society, Pittsburgh, 1992) p. 47.Google Scholar
26. Krivanek, O.L., Gubbens, A.J., Dellby, N. and Meyer, C.E., Microsc. Microanal. Microstruct., 3, 187 (1992).Google Scholar
27. Leapman, R.D., Hunt, J.A., Buchanan, R.A. and Andrews, S.B., Ultramicroscopy, 49, 225 (1993).Google Scholar
28. Somlyo, A.P., Bond, M. and Somlyo, A.V., Nature (London), 314, 622 (1985).Google Scholar
29. Leapman, R.D. and Hunt, J.A. (1991) Comparison of detection limits for EELS and EDXS. Microsc. Microanal. Microstruct. 2: 231244.Google Scholar
30. Egerton, R.F., in Electron Energy Loss Spectroscopy in the Electron Microscope (Plenum, New York, 1986).Google Scholar
31. Sun, S., Shi, S. and Leapman, R.D., Ultramicroscopy, 50, 127 (1993).Google Scholar
32. Zglinicki, T. von, J. Microsc., 161, 149 (1991).Google Scholar
33. Dubochet, J., Adrian, M., Chang, J., Homo, J. Cl., Lepault, J., McDowall, A.W., and Schultz, P., Quart. Rev. Biophys., 21, 129 (1988).Google Scholar
34. Use of brand names does not constitute or imply endorsement.Google Scholar