Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T19:57:56.709Z Has data issue: false hasContentIssue false

Early Nucleation Events in the Biomineralization of Calcium Phosphates

Published online by Cambridge University Press:  09 February 2011

Baoquan Xie
Affiliation:
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A.
George Nancollas
Affiliation:
Department of Chemistry, University at Buffalo, The State University of New York, Buffalo, NY 14260, U.S.A.
Get access

Abstract

Our work focuses on the earliest events of homo-/heterogeneous nucleation from an initial supersaturated solution to the subsequent growth of nuclei. The combined use of conductance, together with hydrogen and calcium ISEs has provided new insights into the mechanisms of crystal nucleation and phase stability. We propose that two types of ACP are formed during HAP nucleation. The initial subcritical calcium-phosphate ion clusters form an amorphous [CaHPO4·xH2O] phase (ACP-1), which transforms to amorphous [Ca3(PO4)2] (ACP-2), and subsequently to HAP. This study is a major step forward in our understanding of the earliest nucleation events in vitro and in vivo. Additives may influence HAP nucleation by interacting with ACP clusters during the early induction period.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weiner, S. and Wagner, H. D., Annu. Rev. Mater. Sci. 28, 271298 (1998).Google Scholar
2. Stupp, S. I. and Braun, P. V., Science 277 (5330), 12421248 (1997).10.1126/science.277.5330.1242Google Scholar
3. Long, J. R., Dindot, J. L., Zebroski, H., Kiihne, S., Clark, R. H., Campbell, A. A., Stayton, P. S. and Drobny, G. P., Proc. Natl. Acad. Sci. USA 95 (21), 1208312087 (1998).10.1073/pnas.95.21.12083Google Scholar
4. Heuer, A. H., Fink, D. J., Arias, V. J., Calvert, P. D., Kendali, K., Messing, G. L., Blackwell, J., Rieke, P., Thompson, D., Wheeler, A. P., Veis, A. and Caplan, A. I., Science 255, 1098 (1992).Google Scholar
5. Palmer, L. C., Newcomb, C. J., Kaltz, S. R., Spoerke, E. D. and Stupp, S. I., Chem. Rev. 108, 4754 (2008).Google Scholar
6. Wang, L. and Nancollas, G. H., Chem. Rev. 108, 46284669 (2008).10.1021/cr0782574Google Scholar
7. Wang, Z., Ma, G. and Liu, X. Y., J. Phys. Chem. B (113), 1639316399 (2009).10.1021/jp905846pGoogle Scholar
8. Yang, X., Wang, L., Qin, Y., Sun, Z., Henneman, Z. J., Moradian-Oldak, J. and Nancollas, G. H., J. Phys. Chem. B 114 (6), 22932300 (2010).Google Scholar
9. Tang, R., Wang, L. and Nancollas, G. H., J. Mater. Chem. 14, 23412346 (2004).Google Scholar