No CrossRef data available.
Article contents
Dynamics of water, hydrated-ions and charged polymers in highly-confined films, and their role in friction modification
Published online by Cambridge University Press: 01 February 2011
Abstract
Recent studies have revealed that, in contrast to non-associating liquids such as oils or organic solvents, salt-free water retains a viscosity close to its bulk value even when confined to films thinner than some 3 nm, indeed down to only one or two monolayers thick [1,2]. For the case of high concentration aqueous salt solution compressed down to subnanometer films between charged surfaces, the trapped hydrated ions serve to act as molecular ball-bearings, sustaining a large load while remaining very fluid under shear [3]. This behaviour is attributed to the tenacity of the hydration sheaths together with their rapid relaxation time. Finally, a very recent study [4] has shown that when charged polymer brushes in aqueous media are compressed and slid past each other, they provide a lubrication that is considerably superior to that afforded by neutral brushes: This is attributed on the one hand to the resistance to mutual interpenetration of the chains due to entropic barriers in the good-solvent conditions, and, on the other hand, to the hydration-sheaths on the charged polymer segments which can act – as noted above – as molecular ball-bearings.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004