Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T06:57:22.305Z Has data issue: false hasContentIssue false

Dynamics of Water Confined on the Surface of Titania and Cassiterite Nanoparticles

Published online by Cambridge University Press:  07 July 2011

Nancy L. Ross
Affiliation:
Dept. of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.
Elinor C. Spencer
Affiliation:
Dept. of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, U.S.A.
Andrey A. Levchenko
Affiliation:
Setaram Inc., 8430 Central Ave., Suite C and 3D, Newark, California 94560
Alexander I. Kolesnikov
Affiliation:
Neutron Scattering Sciences Division, Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, U.S.A.
Douglas L. Abernathy
Affiliation:
Neutron Scattering Sciences Division, Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, U.S.A.
Juliana Boerio-Goates
Affiliation:
Dept. of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
Brian F. Woodfield
Affiliation:
Dept. of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602
Alexandra Navrotsky
Affiliation:
Peter A. Rock Thermochemistry Laboratory and NEAT ORU, University of California at Davis, Davis, California 95616, U.S.A.
Guangshe Li
Affiliation:
State Key Lab of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Science, Fuzhou 350002, P. R. China.
Wei Wang
Affiliation:
Chemical Science Division, Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, U.S.A.
David J. Wesolowski
Affiliation:
Chemical Science Division, Oak Ridge National Laboratory, PO BOX 2008, Oak Ridge, Tennessee 37831, U.S.A.
Get access

Abstract

We present low-temperature inelastic neutron scattering spectra collected on two metal oxide nanoparticle systems, isostructural TiO2 rutile and SnO2 cassiterite, between 0-550 meV. Data were collected on samples with varying levels of water coverage, and in the case of SnO2, particles of different sizes. This study provides a comprehensive understanding of the structure and dynamics of the water confined on the surface of these particles. The translational movement of water confined on the surface of these nanoparticles is suppressed relative to that in ice-Ih and water molecules on the surface of rutile nanoparticles are more strongly restrained that molecules residing on the surface of cassiterite nanoparticles. The INS spectra also indicate that the hydrogen bond network within the hydration layers on rutile is more perturbed than for water on cassiterite. This result is indicative of stronger water-surface interactions between water on the rutile nanoparticles than for water confined on the surface of cassiterite nanoparticles. These differences are consistent with the recently reported differences in the surface energy of these two nanoparticle systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Baraton, M.-I., and Merhari, L., J. Nanopar. Res., 6, 107 (2004)Google Scholar
2. Waychunas, G. A., Kim, C. S., and Banfield, J. F., J. Nanopar. Res., 7, 407 (2005)Google Scholar
3. Aroutiounian, V. M., Arakelyan, V. M., and Shahnazaryan, G. E., Solar Energy, 78, 581 (2005)Google Scholar
4. Al‑Abadleh, H. A., Grassian, V. H.,Sur. Sci. Rep., 52, 63 (2003)Google Scholar
5. Li, G., Li, L., Boerio-Goates, J., and Woodfield, B. F., J. Am. Chem. Soc., 127, 8659 (2005)Google Scholar
6. Levchenko, A. A., Li, G., Boerio-Goates, J., Woodfield, B. F., and Navrotsky, A., Chem. Mater. 18, 6324 (2006)Google Scholar
7. Boerio-Goates, J., Li, G., Li, L., Walker, T. F., Parry, T., and Woodfield, B. F., Nano Lett., 6, 750 (2006)Google Scholar
8. Alba‑Simionesco, C., Coasne, B., Dosseh, G., Dudziak, G., Gubbins, K. E., Radhakrishnan, R., and Sliwinska‑Bartkowiak, M., J. Phys.: Condens. Matter., 18, R15 (2006)Google Scholar
9. Alcoutlabi, M., and Mckenna, G. B., J. Phys.: Condens. Matter., 17, R461 (2006)Google Scholar
10. The coherent (σcoh), incoherent (σinc), and total (σtot) neutron scattering cross-sections for hydrogen are 1.76, 80.26, and 82.02 barns, respectively. For titanium σcoh = 1.48 barns, σinc = 2.87 barns, and σtot = 4.35 barns. For tin σcoh = 4.871 barns, σinc = 0.022 barns, and σtot = 4.893 barns. For oxygen σcoh = 4.23 barns, σinc = 0.00 barns, and σtot = 4.23 barns. These values are taken from V. F. Sears, Neutron News, 3, 26 (1992)Google Scholar
11. Spencer, E. C., Levchenko, A. A., Ross, N. L., Kolesnikov, A. I., Boerio‑Goates, J., Woodfield, B. F., Navrotsky, A., and Li, G., J. Phys. Chem. A, 113, 2796 (2009)Google Scholar
12. Ma, Y., Castro, R. H. R., Zhou, W., Navrotsky, A., J. Mater. Res., in press (2011)Google Scholar
13. Bandura, A. V., Kubicki, J. D., and Sofo, J. O., J. Phys. Chem. B, 112, 11616 (2008)Google Scholar
14. Mamontov, E., Vlcek, L., Wesolowski, D. J., Cummings, P. T., Wang, W., Anovitz, L. M., Rosenqvist, J., Brown, C. M., and Garcia Sakai, V., J. Phys. Chem. C, 111, 4328 (2007)Google Scholar
15. Liu, S., Liu, Q., Boerio-Goates, J., Woodfield, B. F., J. Adv. Mater., 39, 18 (2007)Google Scholar
16. Loong, C.-K., Ikeda, S., and Carpenter, J. M., Nuc. Instr. Meth. Phys. Res., A260, 381 (1987)Google Scholar
17. Kolesnikov, A. I., Zanotti, J.‑M., and Loong, C.‑K., Neutron News, 15(3), 19 (2004)Google Scholar
18. Abernathy, D. L., Natiziario Neutroni E Luce Di Sincrotrone, 13(1), 4 (2008)Google Scholar
19. Li, J. and Kolesnikov, A. I., J. Mol. Liq., 100, 1 (2002)Google Scholar
20. Li, J.-C., Londono, J. D., Ross, D. K., Finney, J. L., Tomkinson, J., Sherman, W. F., J. Chem. Phys., 94(10), 6770 (1991)Google Scholar
21. Spencer, E. C., Ross, N. L., Parker, S. F., Kolesnikov, A. I., Woodfield, B. F., Woodfield, K., Rytting, M., Boerio-Goates, J., Navrotksy, A., J. Phys. Chem. A, submitted (2011)Google Scholar
22. Levchenko, A. A., Kolesnikov, A. I., Ross, N. L., Boerio-Goates, J., Woodfield, B. F., Li, G., and Navrotsky, A., J. Phys. Chem. A, 111, 12584 (2007)Google Scholar
23. Loong, C.‑K., Richardson, J. W. Jr., and Ozawa, M., J. Catalysis, 157, 636 (1995)Google Scholar
24. Ozawa, M., Suzuki, S., Loong, C.‑K., and Nipko, J. C., Appl. Sur. Sci., 121/122, 133 (1997)Google Scholar
25. PeakFit v4.12, SeaSolve Software Inc., 1999–2003.Google Scholar