Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T09:16:05.190Z Has data issue: false hasContentIssue false

The Dynamics of Phase Separation in Rigid-Rod Molecular Composites

Published online by Cambridge University Press:  26 February 2011

Hoe Hin Chuah
Affiliation:
University of Dayton Research Institute, Dayton, OH 45469
Thein Kyu
Affiliation:
Polymer Engineering Center, University of Akron, Akron, OH 44325
T. E. Helminiak
Affiliation:
Materials Laboratory, Wright-Patterson Air Force Base, OH 45433
Get access

Abstract

The thermally induced phase separation of poly(p-phenylene benzobisthiazole)/ Nylon 66 molecular composites was followed by small-angle light scattering which showed the development of a scattering ring. The intensity increased and the ring moved towards the main beam as a function of time.

The scattering vector qm and intensity maxima Im scaled as qm~t−∝ and Im~tβ with ∝~ 0.33 and β = 0.91-0.95, in close agreement with the cluster dynamics prediction of Binder. However, at longer times, the increase in both qm and Im slowed down dramatically indicating a different mechanism. The structure function S(x) was used to test the validity of universal scaling for a rigid-rod/flexible coil polymer blend. At large x, S(x) scaled to the power of −2.4 in x, which is in between values predicted for systems with one and two-dimensional diffusion.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Helminiak, T.E. et al. , Polymer Prep., ACS, 16(2), 659 (1975).Google Scholar
2. Hwang, W-F. et al. , J. Macromol. Sci., B22, 231 (1983).Google Scholar
3. Chuah, H.H., Kyu, T. and Helminiak, T.E., Polymer, 21, 2129 (1987).Google Scholar
4. Chuah, H.H., Tan, L.S., and Arnold, F.E., Polym. Engr. Sci., in print.Google Scholar
5. Kyu, T. and Saldhana, J., Macromolecules, 21, 1021 (1988).Google Scholar
6. Sasaki, K. and Hashimoto, T., Macromolecules, 17, 2818 (1984).CrossRefGoogle Scholar
7. Nojima, S., Ohyama, Y., Yamaguchi, M. and Nose, T., Polymer J., 14, 907 (1982).CrossRefGoogle Scholar
8. Russel, T.P., Hadziioannou, G., and Warburton, W., Macromolecules, 18, 78 (1986).Google Scholar
9. Hashimoto, T., Itakura, M., and Shimidzu, N., J. Chem. Phys., 85, 6773 (1986).Google Scholar
10. Hashimoto, T. et al. , MRS Fall Meeting Abstract, 1987.Google Scholar
11. Snyder, H.L. and Meakin, P., J. Chem. Phys., 79, 5588 (1983).CrossRefGoogle Scholar
12. Nakai, A., Shiwaku, T., Hasegawa, H., and Hashimoto, T., Macromolecules, 19, 3010 (1986).Google Scholar
13. Kyu, T. and Zhuang, P., Polym. Commun., 29, 89 (1988).Google Scholar
14. Yang, H.J., Ph.D. Thesis, University of Massachusetts, 1985.Google Scholar
15. Han, C.C., Okada, M., Muroga, Y., Bauer, B.J. and Tian-Cong, Q., Polym. Engr. & Sci., 26, 1208 (1986).Google Scholar
16. Sato, T. and Han, C.C., J. Chem. Phys., 88, 2057 (1988).Google Scholar
17. Cahn, J.W. and Hilliard, J.E., J. Chem. Phys., 29, 258 (1958).Google Scholar
18. Binder, K., Phy. Rev., B15, 4425 (1977).Google Scholar
19. Lifshift, I.M. and Slyozov, V.V., J. Phys. Chem. Solids, 19, 35 (1961).Google Scholar
20. Siggia, E.D., Phys. Rev., A20, 595 (1979).Google Scholar
21. Hashimoto, T., Itakura, M. and Hasegawa, H., J. Chem. Phys., 85, 6118 (1987).Google Scholar
22. Furukawa, H., Physica, 123A, 497 (1984).Google Scholar
23. Komura, S., Osamura, K., Fujii, H. and Takeda, T., Phys. Rev., B31, 1278 (1985).Google Scholar