Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:27:34.517Z Has data issue: false hasContentIssue false

Dynamics of Liquids in Confined Geometries

Published online by Cambridge University Press:  21 February 2011

Shu Xu
Affiliation:
Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
J.-P. Korb
Affiliation:
Laboratoire de Physique de la Matière Condensée, Ecole Polytechnique, CNRS 91128, Palaiseau, France.
J. Jonas
Affiliation:
Department of Chemistry, School of Chemical Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801
Get access

Abstract

An overview of several NMR studies of liquids in confined geometries is presented. First, the NMR relaxation rates, 1/T1, 1/T , and 1/T2 were measured for several molecular liquids confined to porous silica glasses with pore radii in the range from 12 Å to 100 Å as a function of temperature, pore size, and frequency. The experimental relaxation data were interpreted in terms of bulk, surface, and topological contributions using the following expression:

where 1/Tib and 1/Tis are the bulk and the surface layer relaxation rates, ε is the thickness of the surface layer, R is the pore radius, and Ai(ω) represents the pure topological effect.

Second, the pressure effects on the dynamics of the confined liquid of acetonitrile-d3 were also investigated. Third, the natural abundance of 13C spin lattice relaxation rates for CS2 confined to porous silica glasses provided information about confinement effects on the angular momentum behavior of this simple liquid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Klafter, J. and Drake, J.M., editors in Molecular Dynamics in Restricted Geometries. (John Wiley & Sons: New York, 1989).Google Scholar
2 Drake, J.M., Klafter, J., Kopelman, R., editors in Dynamics in Small Confining Systems. (Mater. Res. Soc. Proc, 1990).Google Scholar
3 Brinker, C.J., Keefer, K.D., Schaefer, D.W., Ashley, C.S., J. Non-Cryst. Solids 48, 47, (1982).Google Scholar
4 Irwin, A.D., Holmgren, J.S., Zerda, T.W., Jonas, J., J. Non-Cryst. Solids 89, 191 (1987).Google Scholar
5 Brinker, C.J. and Scherer, G.W., J. Non-Cryst. Solids 70, 301 (1985).Google Scholar
6 Liu, G., Li, Y., Jonas, J., J. Chem. Phys. 90, 5881 (1989).Google Scholar
7 Liu, G., Mackowiak, M., Li, Y., Jonas, J., J. Chem. Phys. 149, 165 (1990).Google Scholar
8 Mackowiak, M. and Liu, G., Jonas, J., J. Chem. Phys. 93, 2154 (1990).Google Scholar
9 Liu, G., Mackowiak, M., Li, Y., Jonas, J., J. Chem. Phys. 94, 239 (1991).Google Scholar
10 Liu, G, Li, Y., Jonas, J., J. Chem. Phys. 95, 6892 (1991).Google Scholar
11 Xu, S., Zhang, J., Jonas, J., J. Chem. Phys. 97, 4564 (1992).Google Scholar
12 Koziol, P., Nelson, S.D., Jonas, J., Chem. Phys. Lett. 201, 383 (1993).Google Scholar
13 Korb, J.P., Xu, S., Jonas, J., J. Chem. Phys. 98, 2411 (1993).Google Scholar
14 Korb, J.P., Delville, A., Xu, S., Kim, Y.J., Demeulenaere, G., Costa, P., Jonas, J., J. Chem. Phys. (submitted).Google Scholar
15 Zhang, J. and Jonas, J., J. Phys. Chem. 97, 8815 (1993).Google Scholar
16 Xu, S., Kim, Y.J., Jonas, J., Chem. Phys. Lett. 218, 329 (1994).Google Scholar
17 Xu, S., Kim, Y.J., Ballard, L., Jonas, J., (unpublished results).Google Scholar
18 Warnock, J., Awschalom, D.D., Shaefer, M.W., Phys. Rev. B. 34, 475 (1986).Google Scholar
19 Nikiel, L., Hopkins, B., Zerda, T.W., J. Phys Chem. 94, 7458 (1990).Google Scholar
20 Deutsch, J. M. and Waugh, J.S., J. Chem. Phys. 43, 1914 (1965).Google Scholar
21 Spiess, H.W., Schweitzer, D., Haeberlen, U., Hausser, K.H., J. Magn. Res. 5, 101 (1971).Google Scholar
22 Sindorf, D.W. and Maciel, G.E., J. Phys. Chem. 87, 5516 (1983).Google Scholar
23 Brownstein, K.R. and Tarr, CE., J. Magn. Res. 26, 17 (1977).Google Scholar
24 Gutowsky, HS. and Pake, G.E., J. Chem. Phys. 18, 162 (1950).Google Scholar