Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T22:59:31.947Z Has data issue: false hasContentIssue false

Dynamics of grain boundary motion at the atomic level

Published online by Cambridge University Press:  15 March 2011

K. L. Merkle
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
L. J. Thompson
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, U.S.A.
F. Phillipp
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 3, D-70569 Stuttgart, Germany
Get access

Abstract

Grain boundaries (GBs) in polycrystalline materials play a pivotal role in controlling their mechanical and physical behavior. High-resolution electron microscopy (HREM) was used to study thermally activated GB migration in thin films of Al and Au at elevated temperatures (T > 0.5 Tm). Grain boundary engineering via epitaxial templating allowed the manufacture of well-defined grain and interfacial geometries. These techniques enabled the observation of tilt, but also twist and general GBs at atomic resolution in-situ at high temperatures. Surface-energy driven GB migration occurred in general GBs, whereas tilt GB motion was curvature driven. Digital analysis of HREM video recordings have given considerable insight in the dynamics of GB motion at elevated temperatures. It is not surprising that the complex and diverse migration mechanisms depend on GB geometry as well as on interatomic interactions. The results provide, among others, direct evidence for collective effects by concerted atomic shuffles, ledge propagation in (113) symmetric tilt GBs, and motions of triple junctions at elevated temperatures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gottstein, G. and Shvindlerman, L. S., Grain boundary migration in metals, (CRC Press, Bota Raton, 1999), G. Gottstein and L. S. Shvindlerman, Scripta Metall. et Mater. 27, 1521 (1992).Google Scholar
2. Gottstein, G., Molodov, D. A. and Shvindlerman, L. S., Interface Science 6, 7 (1998).Google Scholar
3. Mott, N. F., Proc. Phys. Soc. 60, 391 (1948).Google Scholar
4. Merkle, K. L., Thompson, L. J. and Phillipp, F., Phys. Rev. Lett. 88, 225501 (2002).Google Scholar
5. Merkle, K. L. and Thompson, L. J., Phys. Rev. Lett. 83, 556 (1999).Google Scholar
6. Phillipp, F., Höschen, R., Osaki, M., Möbus, G. and Rühle, M., Ultramicroscopy 56, 1 (1994).Google Scholar
7. Smith, D. J., Rep. Prog. Phys. 60, 1513 (1997).Google Scholar
8. Schonfelder, B., Wolf, D., Phillpot, S. R. and Furtkamp, M., Interface Science 5, 245 (1997).Google Scholar
9. Babcock, S. E. and Balluffi, R. W., Acta metall. 37, 2367 (1989).Google Scholar
10. Lojkowski, W., Molodov, D. A., Gottstein, G. and Shvindlerman, L. S. in Intergranular and Interphase Boundaries in Materials, Pt 2, Materials Science Forum 207, 1996) p. 537.Google Scholar
11. Jhan, R.-J. and Bristowe, P. D., Scripta metall. et mater. 24, 1313 (1990).Google Scholar
12. Merkle, K. L., Microscopy and Microanalysis 3, 339 (1997).Google Scholar
13. Wolf, D., Surface Science 226, 389 (1990).Google Scholar
14. Merkle, K. L., Thompson, L. J. and Phillipp, F., Interface Science, In press (2004).Google Scholar
15. Wolf, D. and Merkle, K. L.. in MATERIALS INTERFACES Atomic-level structure and properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London 1992) p. 87.Google Scholar
16. Merkle, K. L., Thompson, L. J. and Phillipp, F., Mat. Res. Soc. Symp. 652, Y2.4 (2000).Google Scholar
17. Kurtz, R. J., Hoagland, R. G. and Hirth, J. P., Phil. Mag. A 79, 683 (1999).Google Scholar
18. Hirth, J. P., Private communication (2004).Google Scholar
19. Merkle, K. L., Thompson, L. J. and Phillipp, F., Phil Mag. Lett. 82, 589 (2002).Google Scholar
20. Merkle, K. L. and Thompson, L. J., Mater. Lett. 48, 188 (2001).Google Scholar
21. Upmanyu, M., Srolovitz, D. J., Shvindlerman, L. S. and Gottstein, G., Interface Science 6, 287 (1998).Google Scholar
22. Gleiter, H., Acta metall. 17, 853 (1969).Google Scholar