Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T05:52:11.205Z Has data issue: false hasContentIssue false

Dynamic Annealing Phenomena and the Origin of RTA-Induced “Hairpin” Dislocations

Published online by Cambridge University Press:  25 February 2011

W. Maszara
Affiliation:
1North Carolina State University, Raleigh, North Carolina27695-7916
D.K. Sadana
Affiliation:
1North Carolina State University, Raleigh, North Carolina27695-7916 Microelectronic Center of North Carolina, Research Triangle Park, North Carolina 27709
G.A. Rozgonyi
Affiliation:
1North Carolina State University, Raleigh, North Carolina27695-7916 Microelectronic Center of North Carolina, Research Triangle Park, North Carolina 27709
T. Sands
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
J. Washburn
Affiliation:
Lawrence Berkeley Laboratory, Berkeley, CA 94720
J.J. Wortman
Affiliation:
1North Carolina State University, Raleigh, North Carolina27695-7916
Get access

Abstract

The geometry, origin, and diffusion along hairpin defects in Si were investigated using TEM and SIMS techniques. The defect that grows from the amorphous-crystalline (a/c) interface following solid phase epitaxy growth front was found to be a perfect dislocation with a/2(101) Burgers vector. Misoriented microcrystallites within the a/c transition region are proposed to be nucleation sites for the hairpin dislocations. The density of the crystallites increases with an overall coarsening of the interface which occurs during dynamic annealing processes stimulated by implantation or post-implantation low temperature annealing. Hairpin dislocations were found to pipe-diffuse boron at much higher rates than bulk processes significantly shifting dopant profiles. The diffusion coefficient of boron pipe diffusion at 1150°C was found to be about 104 times higher than the bulk one.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Crowder, B.L and Morehead, F.F, Appl. Phys. Lett. 14, 133 (1969).Google Scholar
2. Beanland, D.G, Solid State Elec. 21, 537547 (1978).Google Scholar
3. Seidel, T.E, IEEE Electron. Dev. Lett., EDL-4 10, 354 (1983).Google Scholar
4. Tsai, M.Y and Streetman, B.G, J. Appl. Phys. 50(1), 183187 (1979).Google Scholar
5. Maszara, W., Carter, C., Sadana, D.K, Liu, J., Ozguz, V., Wortman, J., and Rozgonyi, G.A in: Energy Beam-Solid Interactions and Transient Thermal Processing, Fan, J.C.C. and Johnson, N.M eds. (North-Holland, New York 1984), Mat. Res. Soc. Symp. Proc. 23, 285291.Google Scholar
6. Narayan, J., Holland, O.W, and Appleton, B.R, J. Vac. Sci. Technol. B1(4), 871887 (1983).Google Scholar
7. Sands, T., Washburn, J., Gronski, R., Maszara, W., Sadana, D.K, and Rozgonyi, G.A, Appl. Phys. Lett. 45(9), 982984 (1984).Google Scholar
8. Williams, J.S, Christodoulides, C.E, and Grant, W.A, Radiat. Eff. 48, 157160 (1980).Google Scholar
9. Krimmel, E.F., Oppolzer, H., Runge, H., and Wondrak, W., Phys. Stat. Sol. (a) 66, 565571 (1981).Google Scholar
10. Seidel, T.E, Knoell, R., Stevie, F.A, Poli, G., and Schwartz, B. in: VLSI Science and Technology/1984, Bean, K.E and Rozgonyi, G.A eds. (Proc. of Electrochem. Soc. Meeting, 1984, vol. 84-7) pp. 201210.Google Scholar
11. Sands, T., Washburn, J., Gronsky, R., Maszara, W., Sadana, D.K, and Rozgonyi, G.A, J. Electronic. Mat. Dec. 1984, in press.Google Scholar
12. Sadana, D.K, Maszara, W., Wortman, J.J, Rozgonyi, G.A, and Chu, W.K, J. Electrochem. Soc. 131(4), 943945 (1984).Google Scholar
13. Sterkov, V.A, Panteleev, V.A, Pavlov, P.V, Sov. Phys.-Solid State 9, 533 (1967).Google Scholar
14. Dudko, G.V, Kolegaev, M.A, and Panteleev, V.A, Sov. Phys.-Solid State 11, 1097 (1969).Google Scholar
15. Watkins, G.D in: Radiation Effects in Semiconductors, Vook, F.L ed. (Plenum Press, New York 1968) p. 67.Google Scholar
16. E.g. see computer programs TRIM 84, MARLOWE for nuclear and electronic stopping profiles of implanted ions.Google Scholar
17. Wilson, J., Metal Rev. 10, 381 (1965).Google Scholar
18. Sedgwick, T.O, Cohen, S.A, Oehrlein, G.S, Deline, V.R, Kalish, R., and Shatas, S., in: VLSI Science and Technology/1984, Bean, K.E and Rozgonyi, G.A eds. (Proc. of Electrochem. Soc. Meeting, 1984, vol. 84-7), pp. 192200.Google Scholar
19. Seidel, T.E and MacRae, A.U, Trans. of the Metallurgical Soc. of AIME 245, 491498 (1969).Google Scholar
20. Pavlov, P.V, Lainer, L.V, Sterkhov, V.A, and Panteleev, V.A, Sov. Phys.-Solld State 8(3), 580584 (1966).Google Scholar