No CrossRef data available.
Article contents
Ductility Response of Ni3Al-Zr-B Base Alloys with Ternary Elements to Strain Rate and High Temperature
Published online by Cambridge University Press: 15 February 2011
Abstract
The compressive ductilities of Ni3Al-Zr-B base alloys with sole addition of magnesium (0.02∼0.06wt.%) and combined addition of magnesium(0.02wt.%) and silicon(0.54∼1.08wt.%) respectively responding to strain rate rising from 10-4sec-1 to 10-1 sec-1 have been studied in a high temperature range of 1073∼1273K. The results show that the compressive strains at rupture(CSR) of the alloys have been greatly improved by sole addition of magnesium and the alloys with combined addition of magnesium and silicon reveal even higher CSR values, furthermore, at temperatures of 1073K and 1273K, the strain rate dependence of CSR reveals to be anomalous, i.e, the CSR value increases as the strain rate rises, and then declines until it surpasses the peak value, which is corresponded to the strain rate of 10-3 sec-1 and 10-3 sec-1 respectively.
The beneficial effect of magnesium and silicon exists in their competence of reducing strain rate sensitivity exponent values. The mechanisms of the anomalous ductilizing behavior in the Ni3Al as affected by ternary elements are discussed.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997