Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T02:43:25.583Z Has data issue: false hasContentIssue false

Dry Etching of III-V Nitrides

Published online by Cambridge University Press:  21 February 2011

S. J. Pearton
Affiliation:
University of Florida, Gainesville, FL 32611 USA
R. J. Shul
Affiliation:
Sandia National Laboratories, Albuquerque NM 87185 USA
G. F. McLane
Affiliation:
Army Research Laboratory, Ft. Monmouth NJ 07703 USA
C. Constantine
Affiliation:
Plasma Therm IP, St. Petersburg FL 33716 USA
Get access

Abstract

The chemical inertness and high bond strengths of the III-V nitrides lead to slower plasma etching rates than for more conventional III-V semiconductors under the same conditions. High ion density conditions (>3×1011cm−3) such as those obtained in ECR or magnetron reactors produce etch rates up to an order of magnitude higher than for RIE, where the ion densities are in the 109 cm−3 range. We have developed smooth anisotropic dry etches for GaN, InN, AlN and their alloys based on Cl2/CH4/H2/Ar, BCl3/Ar, Cl2/H2, C12/SF6, HBr/H2 and HI/H2 plasma chemistries achieving etch rates up to ∼4,000Å/min at moderate dc bias voltages (≤-150V). Ion-induced damage in the nitrides appears to be less apparent than in other III-V’s. One of the key remaining issues is the achievement of high selectivities for removal of one layer from another.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 see for example, Properties of Group III Nitrides, ed. Edgar, J. H., INSPEC Datareview (IEEE, London UK, 1994).Google Scholar
2 Akasaki, I., Amano, H., Kito, M. and Hiramatsu, K., J. Lumin. 48/49 666 (1991).Google Scholar
3 Matsuoka, T., J. Cryst. Growth 124 433 (1992).Google Scholar
4 Abernathy, C. R., Pearton, S. J., Ren, F., Wisk, P., J. Vac. Sci. Technol. B 11 179 (1993).Google Scholar
5 Nakamura, S., Mukai, T. and Senoh, M., Jap. J. Appl. Phys. 32 L169 (1993).Google Scholar
6 Pearton, S. J., Abernathy, C. R. and Ren, F., Appl. Phys. Lett. 64 2294 (1994).Google Scholar
7 Pearton, S. J.. Abernathy, C. R. and Ren, F., Appl. Phys. Lett. 64 3643 (1994).Google Scholar
8 Shul, R. J., Howard, A. J., Pearton, S. J., Abernathy, C. R., Vartuli, C. B., Barnes, P. A. and Bozack, M. J., J. Vac. Sci. Technol. B 13 2016 (1995).Google Scholar
9 Shul, R. J.. Kilcoyne, S. P., Crawford, M. H., Parmeter, J. E., Vartuli, C. B., Abernathy, C. R. and Pearton, S. J., Appl. Phys. Lett 66 1761 (1995).Google Scholar
10 Pearton, S. J., Abernathy, C. R., Ren, F., Lothian, J. R., Wisk, P. , Katz, A. and Constantine, C., Semicond. Sci. Technol. 8 310 (1993).Google Scholar
11 Lin, M. E., Fan, Z. F., Ma, Z., Allen, L. H. and Morkoc, H., Appl. Phys. Lett. 64 887 (1994).Google Scholar
12 McLane, G. F., Casas, L., Pearton, S. J. and Abernathy, C. R., Appl. Phys. Lett. 66 3328 (1995).Google Scholar
13 Adesida, I., Mahajan, A., Andideh, E., Khan, M. A., Olsen, D. T. and Kuznia, J. N., Appl. Phys. Lett. 63 2777 (1993).Google Scholar
14 Ping, A. T., Adesida, I., Khan, M. A. and Kuznia, J. N., Electron. Lett. 30 1895 (1994).Google Scholar
15 Pearton, S. J., Abernathy, C. R. and Vartuli, C. B., Electron. Lett. 30 1985 (1994).Google Scholar
16 Pearton, S. J., Abernathy, C. R., Ren, F. and Lothian, J. R., J. Appl. Phys. 76 1210 (1994).Google Scholar
17 Abernathy, C. R., J. Vac. Sci. Technol. A 11 869 (1993).Google Scholar
18 Abernathy, C. R., MacKenzie, J. D., Pearton, S. J., Bharatan, S. and Jones, K. S., J. Vac. Sci. Technol. A 13 2104 (1995).Google Scholar
19 Abernathy, C. R., MacKenzie, J. D., Pearton, S. J. and Hobson, W. S., Appl. Phys. Lett. 66 1969 (1995).Google Scholar