No CrossRef data available.
Published online by Cambridge University Press: 10 February 2011
A variety of plasma etching chemistries were examined for patterning NiMnSb Heusler thin films and associated A12O3 barrier layers. Chemistries based on SF6 and Cl2 were all found to provide faster etch rates than pure Ar sputtering. In all cases the etch rates were strongly dependent on both the ion flux and ion energy. Selectivities of ≥20 for NiMnSb over A12O3 were obtained in SF6-based discharges, while selectivities ≤5 were typical in Cl2 and CH4/H2 plasma chemistries. Wet etch solutions of HF/H2O and HNO3/H2SO4/H2O were found to provide reaction-limited etching of NiMnSb that was either non-selective or selective, respectively, to A12O3. In addition we have developed dry etch processes based on Cl2/Ar at high ion densities for patterning of LaCaMnO3 (and SmCo permanent magnet biasing films) for magnetic sensor devices. Highly anisotropie features are produced in both materials, with smooth surface morphologies. In all cases, SiO2 or other dielectric materials must be used for masking since photoresist does not retain its geometrical integrity upon exposure to the high ion density plasma.