Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:26:02.934Z Has data issue: false hasContentIssue false

Dramatic Effect of Temperature on Metal-oxide Nanostructures: Oxidation of Cu Films by In situ UHV-TEM

Published online by Cambridge University Press:  11 February 2011

Guangwen Zhou
Affiliation:
Materials Science and Engineering Dept, University of Pittsburgh, Pittsburgh, PA 15261
Judith C. Yang
Affiliation:
Materials Science and Engineering Dept, University of Pittsburgh, Pittsburgh, PA 15261
Get access

Abstract

We investigated the temperature effect on the Cu2O morphology by oxidizing Cu(100) thin films at the temperature ranging from 350°C to 1000°C. We demonstrated that dramatically different morphologies of oxide nanostructures can be achieved by modifying the oxidation temperature. Quasi-one-dimensional Cu2O structures with aspect ratios as large as 40:1 were formed at the oxidation temperature of 600°C. The in situ observation data on the elongation of Cu2O islands agree with the energetic calculations based on the balance between surface and interface energies and the elastic stress relaxation in the three dimensional islands.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cabrera, N., Mott, N.F., Rep. Prog. Phys. 12, 163 (1948)Google Scholar
2. Yang, J.C., Kolasa, B., Gibson, J.M., Yeadon, M., Appl. Phys. Lett. 73, 2481 (1998)Google Scholar
3. Aggarwal, S., Monga, A.P., Perusse, S.R., Ramesh, R., Ballarotto, V., Williams, E.D., Chalamala, B.R., Wei, Y., Reuss, R.H., Science 287, 2235 (2000)Google Scholar
4. Young, F., Cathcart, J., Gwathmey, A., Acta Metall. 4, 145 (1956)Google Scholar
5. Milne, R.H., Howie, A., Philos. Mag. A 49, 665 (1984)Google Scholar
6. Roennquist, A., Fischmeister, H., J. Inst. Met. 89, 65 (19601961)Google Scholar
7. Heinemann, K., Rao, D.B., Douglas, D.L, Oxid. Met. 9, 379 (1975)Google Scholar
8. Honjo, G., Phys. Soc. Of Japan Journal 4, 330 (1949)Google Scholar
9. McDonald, M.L., Gibson, J.M., Unterwald, F.C., Rev. Sci. Instrum. 60, 700 (1989)Google Scholar
10. Francis, S.M., Leibsle, F.M., Haq, S., Xiang, N., Bowker, M., Surf. Sci. 315, 284 (1994)Google Scholar
11. Lefakis, H.. Ho, P.S., Thin Solid Films, 200(1), 67 (1991)Google Scholar
12. Afify, H.H., Terra, F.S., Momtaz, R.S., J. of Mater. Sci. 7(2), 149 (1996)Google Scholar
13. Tran, N.T.. Keyes, M.P.. Physica Status Solidi A, 126(2), 143 (1991)Google Scholar
14. Yang, J.C., Yeadon, M., Kolasa, B., Gibson, J.M., Scripta Materialia, 38, 1237 (1998)Google Scholar
15. Penev, E., Kratzer, P., Scheffler, M., Phys. Rev. B 54, 5401 (2001)Google Scholar
16. Tersoff, J., Tromp, R.M., Phys. Rev. Lett. 70, 2782 (1993)Google Scholar
17. Zhou, G.W., Yang, J. C., Phys. Rev. Lett. 89, 6101 (2002)Google Scholar