Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T15:38:06.370Z Has data issue: false hasContentIssue false

The dot size effect of amorphous silicon quantum dot on 1.54-μmErluminescence

Published online by Cambridge University Press:  15 March 2011

Nae-Man Park
Affiliation:
Basic Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350, Korea
Tae-Youb Kim
Affiliation:
Basic Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350, Korea (Electronic mail: [email protected])
Gun Yong Sung
Affiliation:
Basic Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350, Korea (Electronic mail: [email protected])
Baek-Hyun Kim
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
Seong-Ju Park
Affiliation:
Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Kwangju 500-712, Korea
Kwan Sik Cho
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
Jung H. Shin
Affiliation:
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea
Jung-Kun Lee
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory, NM 87545, USA
Michael Nastasi
Affiliation:
Materials Science & Technology Division, Los Alamos National Laboratory, NM 87545, USA
Get access

Abstract

The role of the size of amorphous silicon quantum dots in the Er luminescence at 1.54 μm was investigated. As the dot size was increased, the more Er ions were located near one dot due to its large surface area and more Er ions interacted with other ones. This Er-Er interaction caused a weak photoluminescence intensity despite the increase in the effective excitation cross section. The critical dot size, needed to take advantage of the positive effect on Er luminescence, is considered to be about 2.0 nm, below which a small dot is very effective in the efficient luminescence of Er.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Palm, J., Gan, F., Zheng, B., Michel, J., and Kimerling, L. C., Phys. Rev.B 54, 17603 (1996).Google Scholar
2. Polman, A., J. Appl. Phys. 82, 1 (1997).Google Scholar
3. Fujii, M., Yoshida, M., Hayashi, S., and Yamamoto, K., J. Appl. Phys. 84, 4525 (1998).Google Scholar
4. Seo, S.-Y. and Shin, J. H., Appl. Phys. Lett. 78, 2709 (2001).Google Scholar
5. Schmidt, M., Heitmann, J., Scholz, R., and Zacharias, M., J. Non-Cryst. Solids 299–302, 678 (2002).Google Scholar
6. Iacona, F., Pacifici, D., Irrera, A., Miritello, M., Franzò, G., Priolo, F., Sanfilippo, D., Stefano, G. Di, and Fallica, P. G., Appl. Phys. Lett. 81, 3242 (2002).Google Scholar
7. Park, N.-M., Choi, C.-J., Seong, T.-Y., and Park, S.-J., Phys. Rev. Lett. 86, 1355 (2001).Google Scholar
8. Park, N.-M., Kim, S. H., Sung, G. Y., and Park, S.-J., Chem. Vap. Deposition 8, 254 (2002).Google Scholar
9. Park, N.-M., Kim, T.-S., and Park, S.-J., Appl. Phys. Lett. 78, 2575 (2001).Google Scholar
10. Nishio, K., Koga, J., Yamaguchi, T. and Yonezawa, F., Phys.Rev. B 67, 195304 (2003).Google Scholar
11. Franzò, G., Boninelli, S., Pacifici, D., Priolo, F., Iacona, F., and Bongiorno, C., Appl. Phys. Lett. 82, 3871 (2003).Google Scholar
12. Coffa, S., Priolo, F., Franzò, G., Bellani, V., Carnera, A., and Spinella, C., Phys.Rev. B. 48, 11782 (1993).Google Scholar
13. Urbach, H. P. and Rikken, G. L. J. A., Phys. Rev. A 57, 3913 (1998).Google Scholar
14. Bresler, M. S., Gusev, O. B., Pak, P. E., Terukov, E. I., and Yassievich, I.N., Phys. Solid State 43, 625 (2001).Google Scholar
15. Jhe, J.-H., Shin, J. H., Kim, K. J., and Moon, D. W., Appl. Phys. Lett. 82, 4489 (2003).Google Scholar
16. Kikand, P. G. Polman, A., J. Appl. Phys. 88, 1992 (2000).Google Scholar
17. Priolo, F., Franzò, G., Pacifici, D., Vinciguerra, V., Iacona, F., and Irrera, A., J. Appl. Phys. 89, 264 (2001).Google Scholar