Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T08:53:56.791Z Has data issue: false hasContentIssue false

The Doping and Characterization of Erbium-Implanted Gan

Published online by Cambridge University Press:  10 February 2011

J. T. Torvik
Affiliation:
Department of E&CE, University of Colorado, Boulder, CO 80309–0425 Astralux, Inc., 2500 Central Ave., Boulder, CO 80301–2845
R. J. Feuerstein
Affiliation:
Department of E&CE, University of Colorado, Boulder, CO 80309–0425
C. H. Qiu
Affiliation:
Astralux, Inc., 2500 Central Ave., Boulder, CO 80301–2845
J. I. Pankove
Affiliation:
Department of E&CE, University of Colorado, Boulder, CO 80309–0425 Astralux, Inc., 2500 Central Ave., Boulder, CO 80301–2845
F. Namavar
Affiliation:
Spire Corporation, 1 Patriots Park, Bedford, MA 01730–2396
Get access

Abstract

Strong room temperature Er-related photoluminescence (PL) and electroluminescence (EL) at 1539 nm was observed from Er and 0 implanted n-type GaN. Good device performance requires that the Er-related excitation and emission processes be efficient. Single exponential PL and EL time decays with l/e lifetimes of 2.33 ms and 1.74 ms indicates highly efficient radiative process. The Er excitation process in GaN was studied by comparing the efficiency of direct Erabsorption, electron-hole pair recombination, and hot electron (impact) excitation. The strongest Er luminescence and the lowest pump power was found using impact excitation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Wilson, R. G., Schwartz, R. N., Abernathy, C. R., Pearton, S. J., Newman, N., Rubin, M., Fu, T., Zavada, J. M., Appl.Phys.Lett. 65 992 (1994).Google Scholar
2. Franzb, G., Priolo, F., Coffa, S., Polman, A., Camera, A., Appl. Phys. Lett. 64 2235 (1994).Google Scholar
3. Wang, X. Z. and Wessels, B. W., Appl. Phys. Lett. 65 584 (1994).Google Scholar
4. Torvik, J. T., Feuerstein, R. J., Pankove, J. I., Qiu, C. H., and Namavar, F.. Appl. Phys. Lett. 69 2098 (1996).Google Scholar
5. Serna, R., Shin, J. H., Lohmeier, M., Vlieg, E., Polman, A., Alkemade, P. F. A., J. Appl. Phys. 79 2658 (1996).Google Scholar
6. Zheng, B., Michel, J., Ren, F. Y. G., Kimerling, L. C., Jacobson, D. C., and Poate, J. M., Appl. Phys. Lett. 64 2842 (1994).Google Scholar
7. Maruska, H. P. and Tietjen, T. J., Appl. Phys. Lett. 15 327 (1969).Google Scholar
8. Torvik, J. T., Qiu, C. H., Feuerstein, R. J., Pankove, J. I., and Namavar, F., J. Appl. Phys. 81 6343 (1997).Google Scholar
9. Torvik, J. T., Feuerstein, R. J., Qiu, C. H., Leksono, M. W., Pankove, J. I., and Namavar, F., Mat. Res. Soc. Symp. Proc. Vol.422 (1996).Google Scholar
10. Coffa, S., Franzo, G., Priolo, F., Polman, A., and Serna, R., Phys. Rev. B 49 16313 (1994).Google Scholar
11. Pankove, J. I., Maruska, H. P., and Berkeyheiser, J. E., Appl. Phys. Lett. 16 197 (1970).Google Scholar
12. Chemyak, L., Osinsky, A., Temkin, H., Yang, J. W., Chen, Q., Khan, M.A., Appl. Phys. Lett. 69 2531 (1996).Google Scholar