Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:34:32.586Z Has data issue: false hasContentIssue false

Dopant Redistribution in Titanium Silicide/n+ Polysilicon Bilayers During Rapid Thermal Processing

Published online by Cambridge University Press:  22 February 2011

C. B. Cooper III
Affiliation:
Varian Associates, Inc., Corporate Solid State Laboratory 611 Hansen Way, Palo Alto, CA 94303
R. A. Powell
Affiliation:
Varian Associates, Inc., Corporate Solid State Laboratory 611 Hansen Way, Palo Alto, CA 94303
R. Chow
Affiliation:
Varian Associates, Inc., Corporate Solid State Laboratory 611 Hansen Way, Palo Alto, CA 94303
Get access

Abstract

The successful use of rapid thermal processing in an isothermal mode to form Ti polycide structures is described. The silicide was sputter deposited from a composite Ti-Si target onto phosphorus-doped poly-Si. The resulting polycide structure was annealed by exposure to the blackbody radiation from a resistively-heated graphite heater. Rapid diffusion of the P into the Ti silicide is observed even for short annealing times, although resulting P concentrations in the silicide (>7 × 1018cm−3) are relatively low, about 100 times lower than in the doped poly-Si. Properly chosen RTP parameters can minimize the sheet resistance of the polycide without increasing the sheet resistance of the underlying poly-Si layer, which has not been possible for furnace-annealed samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murarka, S. P., Silicides for VLSI Applications (Academic Press, New York, 1983).Google Scholar
2.Crowder, W. L. and Zirinsky, S., IEEE Trans. Elect. Dev., ED–26, 369 (1979).Google Scholar
3.Runovc, F., Norstrom, H., Buchta, R., Wiklund, P. and Peterson, S., Physica Scripta 26, 108 (1982).Google Scholar
4.Lau, C. K., See, Y. C., Scott, D. B., Bridges, J. M., Perna, S. M. and Davies, R. D., IEDM Tech. Digest, 714 (1982).Google Scholar
5.Wang, K. L., Holloway, T. C., Pinizzotto, R. F., Sobczak, Z. P., Hunter, W. R. and Tasch, A. F. Jr., IEEE Trans. Elect. Dev., ED–29, 547 (1982)Google Scholar
6.Pelleg, J. and Murarka, S. P., J. Appl. Phys. 54, 1337 (1983).Google Scholar
7.Norstrom, H., Runovc, F., Buchta, R., Wiklund, P., Ostling, M. and Petersson, C. S., J. Vac. Sci. Technol. A1, 463 (1983).Google Scholar
8.Sedgwick, T. O., J. Electrochem. Soc. 130, 484 (1983).Google Scholar
9.Hill, C., Laser and Electron-Beam Solid Interactions and Materials Processing, Eds.Sigmon, T., Gibbons, J. and Hess, L. D. (Elsevier North-Holland, New York, 1981), p. 361.Google Scholar
10.Fulks, R. T., Powell, R. A. and Stacy, W. T., IEEE Electron Dev. Lett. EDL–3, 179 (1982).Google Scholar
11.McPherson, J., Kaeriyama, T. and Keenan, J., Elec. Mater. Conf.Burlington, VTJune 1983).Google Scholar
12.Turner, F. T. and Harra, D. J., Solid State Technol. 26, No. 7, 115 (1983).Google Scholar
13. RBS (Strathman, M.); SIMS measurements done by Evans, C. A. & Assoc.Google Scholar
14.Iscoff, R., Semicon. International 4, No. 11, 69 (1981).Google Scholar
15.Murarka, S. P. and Fraser, D. B., J. Appl. Phys. 51, 350 (1980).Google Scholar
16.Powell, R. A., Chow, R., Thridandam, C., Fulks, R. T., Blech, I. A. and Pan, J.- D., IEEE Electron. Dev. Lett. EDL–4, 380 (1983).Google Scholar
17.Hopkins, C. of Evans, C. A. & Associates, personal communication.Google Scholar
18. TEM work done by Woolhouse, Geoff of ATACOR, Sunnyvale, CA.Google Scholar
19.Seidel, T. E., IEEE Electron. Dev. Lett. EDL–4, 353 (1983).Google Scholar