Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:46:25.699Z Has data issue: false hasContentIssue false

Dominant Moving Species in the Formation of Amorphous HfNi By Solid-State Reaction

Published online by Cambridge University Press:  26 February 2011

Y.-T. Cheng
Affiliation:
California Institute of Technology, Pasadena, California 91125.
M.-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, California 91125.
W. L. Johnson
Affiliation:
California Institute of Technology, Pasadena, California 91125.
Get access

Abstract

The displacements of Mo, Zr and Pd markers have been monitored by backscattering of MeV He+ to study the growth of the amorphous HfNi phase by solid-state reaction. We find that the Ni is the dominant moving species in this reaction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zallen, R., The Physics of Amorphous Solids (John Wiley & Sons, New York, 1983), P.5 Google Scholar
2. Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett., 51, 415(1983).Google Scholar
3. Schwarz, R.B., Wang, K.L., Johnson, W.L. and Clemens, B.M., J. Non-Cryst. Sol. 61&62. 129(1984).Google Scholar
4. Clemens, E.M., Johnson, W.L. and Schwarz, R.B.. J. Non-Cryst. Sol. 61&62, 817(1984).Google Scholar
5. Van Rossum, M., Nicolet, M-A. and Johnson, W.L., Phys. Rev. B, 29 5498(1984).Google Scholar
6. Johnson, W.L., Dolgin, B.P. and Van Rossum, M., in Glass…Current Issues, Wright, A.F. and Dupuy, J., eds.(NATO ASI Series, Martinus Nijhoff Publisher, Dordrecht, Boston, Lancaster, 1984),P.172 Google Scholar
7. Unruh, K.M., Meng, W.J. and Johnson, W.L., in Mat. Res. Soc. Symp. Proc. Vol 37. edited by Gibson, J.M. and Dawson, L.R. (Mat. Res. Soc, Pittsburgh, 1985), P.551.Google Scholar
8. Guilmin, P., Guyot, P. and Marchai, G., Phys. Lett., 109A, 174(1985).Google Scholar
9. Schroder, H., Samwer, K. and Koster, U., Phys. Rev. Lett., 54, 197(1985).Google Scholar
10. Clemens, B.M. and Suchoski, M.J., Appl. Phys. Lett., 47, 943(1985).Google Scholar
11. Cheng, Y.-T., Johnson, W.L. and Nicolet, M.-A., Appl. Phys. Lett., 47, 800(1985).Google Scholar
12. Smigelskas, A.D. and Kirkendall, E.D., Trans. Am. Inst. Min. Engrs. 171. 130(1947).Google Scholar
13. Chu, W.K., Mayer, J.W. and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, San Francisco, London, 1978).Google Scholar
14. Chu, W.K., Krautle, H., Mayer, J.W., Nicolet, M-A. and Tu, K.N., Appl. Phys. Lett., 25, 454(1974).Google Scholar
15. van Gurp, G.J., Sigurd, D. and van der Weg, W.F., Appl. Phys. Lett., 29, 159(1976).Google Scholar
16. Pretorius, R., Ramiller, L.L., Lau, S.S. and Nicolet, M-A., Appl. Phys. Lett., 30, 501 (1977).Google Scholar
17. Baglin, J., d'Heurle, F. and Peterson, S., Appl. Phys. Lett., 33, 289 (1978).Google Scholar
18. Tu, K.N. and Mayer, J.W., in Thin Films, Interaction and Reactions, Poate, J.M., Tu, K.N., Mayer, J.W., eds.(Wiley, New York, 1978), ch 10.Google Scholar
19. Miedema, A.R., Philis Tech. Rev., 31, 217 (1976).Google Scholar