Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T07:36:13.788Z Has data issue: false hasContentIssue false

DNA-Based Hybrids for Energy Storage Applications

Published online by Cambridge University Press:  23 August 2012

Donna M. Joyce
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433
Narayanan Venkat
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 University of Dayton Research Institute, Dayton, OH 45469
Fahima Ouchen
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 University of Dayton Research Institute, Dayton, OH 45469
Kristi M. Singh
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 UES Inc., Dayton, OH 45432
Steven R. Smith
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433 University of Dayton Research Institute, Dayton, OH 45469
James G. Grote
Affiliation:
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433
Get access

Abstract

Polymeric materials are widely used in power generation and energy storage applications. Deoxyribonucleic acid (DNA) biopolymer-based hybrids have been found to display interesting electrical characteristics, such as a relatively high dielectric constant, good resistivity and dielectric breakdown behavior, and are promising as insulating dielectrics for capacitor applications. This research describes the processing, test structure design, and electrical characterization of DNA-sol-gel hybrids for energy storage applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Thomas, P., Satapathy, S., Dwarakanath, K., and Varma, K. B. R., “Dielectric Properties of Polyvinyledene fluoride/CaCu3Ti4O12 nanocrystal composite thick films”, eXPRESS Polymer Letters, 4(10), 632643, 2010.Google Scholar
2. Wang, Q. and Zhu, L., J. Poly. Sci., Part B: Polymer Physics, 49, 1421, 2011.Google Scholar
3. Barber, P., Balasubramanian, S., Anguchamy, Y., Gong, S., Wibowo, A., Gao, H., Ploehn, H. J., and Loye, H-C. Z., Materials, 2, 1697, 2009.Google Scholar
4. Singh, B., Sariciftci, N. S., Grote, J. G., and Hopkins, F. K., J. Appl. Phys., 100, 024514, 2006.Google Scholar
5. Norwood, R. A., DeRose, C. T., Himmelhuber, R., Peyghambarian, N., Wang, J., Li, L., Ouchen, F., and Grote, J. G., “Dielectric and electrical properties of sol-gel/DNA blends”, Proc. of SPIE, 7403, 74030A, 2009.Google Scholar
6. Norwood, R. A., Thomas, J., Peyghambarian, N., Wang, J., Li, L., Ouchen, F., and Grote, J. G., “Hybrid DNA materials for energy storage”, Proc. of SPIE, 7765, 77650H, 2010.Google Scholar
7. Singh, T. B., Sariciftci, N. S., and Grote, J. G., “Bio-Organic Optoelectronic Devices using DNA”, Organic Electronics: Adv. Polym. Sci., vol. 223, 189212, 2010.Google Scholar
8. Venkat, N., Ouchen, F., Singh, K. M., Smith, S. R., Joyce, D. M., Miller, T., Yaney, P. P., Grote, J. G., and Naik, R. R., “Bio-dielectrics based on DNA-Ceramic Hybrid Films”, Proc. of SPIE, 8103, 81030K, 2011.Google Scholar
9. Heckman, E. M., Hagen, J. A., Yaney, P. P., Grote, J. G., Hopkins, F. K., “Processing Techniques for DNA: A biopolymer for photonics applications”, Appl. Phys. Lett., 87, 211115, 2005.Google Scholar