Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T18:54:45.088Z Has data issue: false hasContentIssue false

Dissolution Kinetics of Nickel in Lead-free Sn-Bi-In-Zn-Sb Soldering Alloys

Published online by Cambridge University Press:  01 February 2011

Katayun Barmak
Affiliation:
[email protected], Carnegie Mellon University, Department of Materials Science and Engineering, Pittsburgh, PA, 15213, United States
David C. Berry
Affiliation:
[email protected], Carnegie Mellon University, Department of Materials Science and Engineering, Pittsburgh, PA, 15213, United States
Vira G. Khoruzha
Affiliation:
[email protected], Institute for Problems of Materials Science, Department of Physical Chemistry of Inorganic Materials, Kyiv, 03180, Ukraine
Kostyantyn A. Meleshevich
Affiliation:
[email protected], Institute for Problems of Materials Science, Department of Physical Chemist ry of Inorganic Materials, Kyiv, 03180, Ukraine
Vasyl I. Dybkov
Affiliation:
[email protected], Institute for Problems of Materials Science, Department of Physical Chemistry of Inorganic Materials, Kyiv, 03180, Ukraine
Get access

Abstract

The dissolution process of nickel in liquid Pb-free 87.5% Sn-7.5% Bi-3% In-1% Zn-1% Sb and 80% Sn-15% Bi-3% In-1% Zn-1% Sb soldering alloys has been investigated by the rotating disc technique at 250-450°C. The temperature dependence of the nickel solubility in the solders obeys a relation of the Arrhenius type cs = 4.94 × 102 exp (-39500/RT) % for the former alloy and cs = 4.19 × 102 exp (-40200/RT)% for the latter, where R is in J mol-1 K-1 (8.314 J mol-1 K-1) and T in K. The solubility values of nickel in the alloys differ considerably, while the dissolution rate constants are rather close. The data presented can be used to evaluate (i) the thickness of the dissolved portion of the solid nickel material during soldering, (ii) the extent of saturation of a solder with nickel and (iii) the effect of dissolution on the growth rate of intermetallic layers at the Ni-solder interface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Alam, M.O., Chan, Y.C., Tu, K.N., J. Appl. Phys. 94, 4108 (2003).Google Scholar
2. Tao, W.H., Chen, C., Chen, C.E. Ho. W.T., Kao, C.R., Chem. Mater. 13, 1051 (2001).Google Scholar
3. Chiu, M.Y., Wang, S.S., Chuang, T.H., J. Electronic Mater. 31, 494 (2002).Google Scholar
4. Yoon, Jeong-Won, Kim, Sang-Won, Koo, Ja-Myeoung, Kim, Dae-Gon, Jung, Seoung-Boo, J. Electronic Mater. 33, 1190 (2004).Google Scholar
5. Lee, Hwa-Teng, Lin, Heng-Sheng, Lee, Cheng-Shyan, Chen, Po-Wei, Mater. Sci. Eng. A, 407, 36 (2005).Google Scholar
6. Liu, P.L., Shang, J.K., Scripta Mater. 53, 631 (2005).Google Scholar
7. Rizvi, M.J., Chan, Y.C., C, Bailey Lu, H., Islam, M.N., J. Alloys Compi. 407, 208 (2006).Google Scholar
8. Wang, Chao-Hong, Chen, Sinn-Wen, Acta Mater. 54, 247 (2006).Google Scholar
9. Hansen, M., Anderko, K., “Constitution of binary alloys” (McGraw-Hill, New-York, 1958).Google Scholar
10. Lashko, S. V., Lashko, N. F., “Paika metallov” (Mashinostroenie, Moskwa, 1988).Google Scholar
11. Barmak, K., Dybkov, V.I., J. Mater. Sci. 39, 4219 (2004)Google Scholar
12. Pribytkov, G.A., Itin, V.I., Izv. Vuzov: Fizika 9, 100 (1975)Google Scholar
13. Dybkov, V.I., Barmak, K., Lengauer, W., Gas, P., J. Alloys Comp. 389, 61 (2005).Google Scholar
14. Dybkov, V.I., “Reaction diffusion and solid state chemical kinetics” (The IPMS Publications, Kyiv, 2002; free access http://users.i.com.ua/~dybkov/V/).Google Scholar