Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:12:48.003Z Has data issue: false hasContentIssue false

Dissociative Phase Transitions, Split Shock Waves, Rarefaction Shocks, and Detonations

Published online by Cambridge University Press:  15 February 2011

C. T. White
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
D. H. Robertson
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
M. L. Elert
Affiliation:
Chemistry Department, U. S. Naval Academy, Annapolis, MD 21402
J. W. Mintmire
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
D. W. Brenner
Affiliation:
Theoretical Chemistry Section, Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

We present a comparative study of two different chemically-sustained shock waves. One shows behavior expected from the Zel'dovich, von Neumann, and Doering (ZND) continuum theory of planar detonations. The other exhibits the complexity of a split shock wave resulting from the presence of a polymorphic phase transition. This comparative study demonstrates the importance of carefully considering the high-pressure characteristics of the model in developing potentials for simulating detonations. This comparative study also raises the fascinating possibility of a first-order phase transition accompanying a condensed-phase detonation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Davis, W. C., Sci. Am. 256, 106 (1987).CrossRefGoogle Scholar
[2] Zel'dovich, Ya. B. and Kompaneets, A. S., Theory of Detonation, (Academic Press, New York, 1960) and references therein.Google Scholar
[3] Fickett, W. and Davis, W.C., Detonation, (U. Calf. Press, Berkeley, 1979); W. Fickett, Introduction to Detonation Theory, (U. Calf. Press, 1985) and references therein.Google Scholar
[4] Holian, B. L., Hoover, W. G., Moran, W., and Straub, G. K., Phys. Rev. A 22, 2798 (1980).CrossRefGoogle Scholar
[5] Dremin, A. N. and Klimenko, V. Yu., Prog. Astronaut. Aeronaut. 75, 253 (1981).Google Scholar
[6] Karo, A. M., Hardy, J. R., and Walker, F. E., Acta Astronautica 5, 1041 (1978).CrossRefGoogle Scholar
[7] Tsai, D. H. and Trevino, S. F., J. Chem. Phys. 81, 5636 (1984).CrossRefGoogle Scholar
[8] Peyrard, M., Odiot, S., Oran, E., Boris, J., and Schnur, J., Phys. Rev. B 33, 2350 (1986);CrossRefGoogle Scholar
Lambrakos, S. G., Peyrard, M., Oran, E. S., and Boris, J. P., Phys. Rev. B 39, 993 (1989).CrossRefGoogle Scholar
[9] Elert, M. L., Deaven, D. M., Brenner, D. W., and White, C. T., Phys. Rev. B 39,1453 (1989).CrossRefGoogle Scholar
[10] Blais, N. C. and Stine, J. R., J. Chem. Phys. 93, 7914 (1990).CrossRefGoogle Scholar
[11] Robertson, D. H., Brenner, D. W., and White, C. T., Phys. Rev. Lett. 67, 3132 (1991);CrossRefGoogle Scholar
White, C. T., Robertson, D. H., and Brenner, D. W., Physica A 188, 357 (1992).CrossRefGoogle Scholar
[12] Brenner, D. W., Robertson, D. H., Elert, M. L., and White, C. T., (submitted for publication).Google Scholar
[13] Tersoff, J., Phys. Rev. Lett. 56, 632 (1986); Phys. Rev. B 37, 6991 (1988).CrossRefGoogle Scholar
[14] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations, (Prentice-Hall, Englewood Cliffs, 1971).Google Scholar
[15] Robertson, D. H., Brenner, D. W., Elert, M. L., and White, C. T., in Shock Compression of Condensed Matter-1991, Schmidt, S. C., Dick, R. D., Forbes, J. W., Tasker, D. G., Eds. (Elsevier Science Publishers B. V., Amsterdam, 1992), p. 115.Google Scholar
[16] White, C. T., Robertson, D. H., Brenner, D. W., Elert, M. L., and Brenner, D. W., in Microscopic Simulations of Complex Hudrodynamic Phenomena, Mareschal, M. and Holian, B. L., Eds. (Plenum Press, New York, 1992), p. 111.CrossRefGoogle Scholar
[17] Minshall, S., Phys. Rev. 98, 271 (1955).Google Scholar
[18] Duvall, G. E. and Graham, R. A., Rev. Mod. Phys. 49, 523 (1977).CrossRefGoogle Scholar
[19] Zel'dovich, Ya. B. and Raizer, Yu. P., Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vols. 1 and 2, (Academic Press, New York, 1966, 1967).Google Scholar