Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-19T04:29:18.297Z Has data issue: false hasContentIssue false

Direct Writing Using Laser Chemical Vapor Deposition

Published online by Cambridge University Press:  15 February 2011

S. D. Allen
Affiliation:
Center for Laser Studies, University of Southern California, University Park DRB 17, Los Angeles, California 90089-1112USA
A. B. Trigubo
Affiliation:
Center for Laser Studies, University of Southern California, University Park DRB 17, Los Angeles, California 90089-1112USA
R. Y. Jan
Affiliation:
Center for Laser Studies, University of Southern California, University Park DRB 17, Los Angeles, California 90089-1112USA
Get access

Abstract

Metal, dielectric and semiconductor films have been deposited by laser chemical vapor deposition (LCVD) using both pulsed and cw laser sources on a variety of substrates. For LCVD on substrates such as quartz, the deposition was monitored optically in both transmission and reflection using a collinear visible laser and the depositing CO2 laser. Deposition initiation and rate were correlated with irradiation conditions, the laser generated surface temperature, and the changing optical properties of the filmpsubstrate during deposition. Single crystallites of W greater than 100 pm tall were deposited using a Kr laser on Si substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, other papers in these proceedings.Google Scholar
2. Allen, S. D., J. Appl. Phys. 52, 6501 (1981).Google Scholar
3. Allen, S. D. and Trigubo, A. B., J. Appl. Phys., to be published (2/83).Google Scholar
4. Allen, S. D., Trigubo, A. B., and Teisinger, M. L., J. Vac. Sci. Tech. 20, 469 (1982).Google Scholar
5. Duley, W. W., CO2 Lasers: Effects and Applications (Academic Press, New York, 1976).Google Scholar
6. Ready, J. F., Effects of High-Power Laser Radiation (Academic Press, New York, 1971).Google Scholar
7. Nissim, Y. I., Lietoila, A., Gold, R. B., and Gibbons, J. F., J. Appl. Phys. 51, 274 (1980).Google Scholar
8. Moody, J. E. and Hendel, R. H., J. Appl. Phys. 53, 4364 (1982).Google Scholar
9. Goldsmith, A., Waterman, T. E., and Hirschhorn, H. J., Handbook of Thermophysical Properties of Solid Materials (Macmillan, New York, 1961).Google Scholar
10. Powell, C. F., Oxley, J. H., and Blocher, J. M. Jr., Vapor Deposition (Wiley, New York, 1966).Google Scholar
11. Leyendecker, G., Bauerle, D., Geittner, P. and Lydtin, H., Appl. Phys. Lett. 39, 921 (1981).Google Scholar
12. Bauerle, D., Irsigler, P., Leyendecker, G., Noll, H., and Wagner, D., Appl. Phys. Lett. 40, 819 (1982).Google Scholar
13. Tisone, G. and Johnson, A. W., private communication.Google Scholar
14. Ehrlich, D., Osgood, R. M. Jr., and Deutsch, T. F., Amer. Vac. Soc. Meeting, Nov. 1981.Google Scholar