Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T23:58:53.940Z Has data issue: false hasContentIssue false

Direct Study of the Thermal Conductivity in Aluminum Nanowires

Published online by Cambridge University Press:  31 January 2011

Nenad Stojanovic
Affiliation:
[email protected], Texas Tech University, Nano Tech Center, Lubbock, Texas, United States
D.H.S. Maithripala
Affiliation:
[email protected], University of Peradeniya, Peradeniya, Sri Lanka
Jordan M. Berg
Affiliation:
[email protected], Texas Tech University, Nano Tech Center, Lubbock, Texas, United States
Mark Holtz
Affiliation:
[email protected], Texas Tech University, Nano Tech Center, Lubbock, Texas, United States
Get access

Abstract

Thermal conductivity and electrical resistivity of 1 μm long aluminum nanowires, 75, 100, and 150nm in width and 100nm thick, were measured at room temperature. The method consists of microfabricated electrothermal test devices and a model-based data processing approach using finite-element analysis (FEA). The electrical and thermal properties of the nanowires differ significantly from bulk values while electrical resistivity agrees well with theoretical prediction. Electron transport equation models, which adequately describe the resistivity data, consistently underestimate the thermal conductivity. Incorporating a phonon contribution of ˜ 21 W/m·K to the total thermal conductivity is found to accurately describe the measured values.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Cahill, D. G. Ford, W. K. Goodson, K. E. Mahan, G. D. Majumdar, A. Maris, H. J. Merlin, R., and Phillpot, S. R. Journal of Applied Physics 93, 793818 (2003).Google Scholar
2 Mayadas, A. F. and Shatzkes, M. Physical Review B 1, 1382 (1970).Google Scholar
3 Sondheimer, E. H. Advances in Physics 50, 499537 (2001).Google Scholar
4 Durkan, C. and Welland, M. E. Physical Review B 61, 14215 (2000).Google Scholar
5 Ou, M. N. Yang, T. J. Harutyunyan, S. R. Chen, Y. Y. Chen, C. D. and Lai, S. J. Applied Physics Letters 92, 063101 (2008).Google Scholar
6 Volklein, F. Proceedings ICT '97. XVI International Conference on Thermoelectrics, p. 711, Dresden, Germany, 2629 Aug 1997.Google Scholar
7 Langer, G. Hartmann, J. and Reichling, M. Review of Scientific Instruments 68, 15101513 (1997).Google Scholar
8 Hochbaum, A. I. Chen, R. Delgado, R. D. Liang, W. Garnett, E. C. Najarian, M. Majumdar, A., and Yang, P. Nature 451, 163167 (2008).Google Scholar
9 Tritt, T. M. Thermal Conductivity: Theory, Properties, and Applications Kluwer, New York, 2004.Google Scholar
10 Chien, H.-C., Yao, D. J. and Hsu, C.-T., Appl. Phys. Lett. 93, 231910 (2008)Google Scholar
11 Stojanovic, N. Jongsin, Y. Washington, E. B. K. Berg, J. M. Holtz, M. W. and Temkin, H., Microelectromechanical Systems, Journal of 16, 12691275 (2007).Google Scholar
12 Lu, X. Shen, W. Z. and Chu, J. H. Journal of Applied Physics 91, 15421552 (2002).Google Scholar
13 Hanaoka, Y. Hinode, K. Takeda, K. and Kodama, D. MATERIALS TRANSACTIONS 43, 16211623 (2002).Google Scholar
14 Zhang, W. Brongersma, S. H. Richard, O. Brijs, B. Palmans, R. Froyen, L. and Maex, K. Microelectronic Engineering 76, 146152 (2004).Google Scholar
15 Feng, B. Li, Z. X. and Zhang, X. Thin Solid Films 517, 28032807 (2009).Google Scholar
16 Majumdar, A. and Reddy, P. Applied Physics Letters 84, 47684770 (2004).Google Scholar
17 Zhou, Y. Anglin, B. and Strachan, A. Journal of Chemical Physics 127 (2007).Google Scholar
18 Slack, G. A. and Galginaitis, S. Physical Review 133, A253 (1964).Google Scholar