Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T08:47:55.177Z Has data issue: false hasContentIssue false

Direct Observation of Calcium Oxalate Monohydrate Precipitation at Phospholipid Monolayers with Brewster Angle Microscopy

Published online by Cambridge University Press:  15 February 2011

Isa O. Benítez
Affiliation:
Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200 and
Rénal Backov
Affiliation:
Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200 and
Saeed R. Khan
Affiliation:
Department of Pathology, University of Florida, Gainesville, Florida 32610.
Daniel R. Talham
Affiliation:
Department of Chemistry, University of Florida, Gainesville, Florida 32611-7200 and
Get access

Abstract

The precipitation of calcium oxalate monohydrate (COM) at phospholipid monolayers has been observed in-situ by Brewster angle microscopy (BAM). A monolayer of 1,2-dipalmitoylsn-glycero-3-phosphocholine (DPPC) compressed to a LC state over a calcium oxalate subphase shows the growth of COM as very bright spots. The identity of COM was confirmed in a transferred film by scanning electron microscopy. BAM can also be used to determine where COM precipitates when the monolayer has two phases at equilibrium. Monolayers of DPPC and 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DPPG) crystallize COM at phase boundaries. In addition, phase separated binary phospholipid mixtures of DPPC and 1,2-dimiristoyl-sn-glycero-3-phosphocholine (DMPC) have been prepared and monitored by BAM. The crystal growth in this case is confined to domains of DPPC due to its ability to form a liquid condensed phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Prien, E. L. and Prien, E. L., Am. J. Med. 45, 654 (1968).Google Scholar
2. Smesko, A., Singh, R. P., Lanzalaco, A. C., and Nancollas, G. H., Colloids and Surfaces 30, 361 (1988).Google Scholar
3. Khan, S. R. and Hackett, R. L., J. Urol. 150, 239 (1993).Google Scholar
4. Boyce, W. H. and Garvey, F. K., J. Urol. 76, 213 (1956)Google Scholar
5. Whipps, S., Khan, S. R., O'Palko, F. J., Backov, R., and Talham, D. R., J. Cryst. Growth. 192, 243 (1998)Google Scholar
6. Backov, R., Khan, S. R., Mingotaud, C., Byer, K., Lee, C. M., and Talham, D. R., J. Am. Soc. Neph. 10, S359 (1999).Google Scholar
7. Backov, R., Lee, C. M., Khan, S. R., Mingotaud, C., Fanucci, G. E., and Talham, D. R., Langmuir 16, 6013 (2000)Google Scholar
8. Khan, S. R., Glenton, P. A., Backov, R., and Talham, D. R., Kidney International 62, 2062 (2002).Google Scholar
9. Loste, E., Diaz-Marti, E., Zarbakhsh, A., and Meldrum, F. C., Langmuir 19, 2830 (2003)Google Scholar
10. Koppenol, S., Yu, H., and Zografi, G., J. Colloid Interface Sci. 189, 158 (1997)Google Scholar
11. Discher, B. M., Schief, W. R., Vogel, V., and Hall, S. B., Biophys. J. 77, 2051 (1999)Google Scholar
12. Park, C. K., Schmitt, F. J., Evert, L., Schwartz, D. K., Israelachvili, J. N., and Knobler, C. M., Langmuir 15, 202 (1999)Google Scholar
13. Gopal, A. and Lee, K. Y. C. J. Phys. Chem. 105 (2001).Google Scholar
14. Dufrene, Y. F., Barger, W. R., Green, J.-B. D., and Lee, G. U., Langmuir 13, 4779 (1997)Google Scholar
15. Reviakine, I., Simon, A., and Brisson, A., Langmuir 16, 1473 (2000)Google Scholar
16. Moraille, P. and Badia, A., Langmuir 18, 4414 (2002)Google Scholar