Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-17T19:12:51.222Z Has data issue: false hasContentIssue false

Direct Nanoscale Patterning by Atomic Manipulation

Published online by Cambridge University Press:  15 February 2011

Craig T. Salling*
Affiliation:
University of Wisconsin-Madison, Engineering Research Building, Madison, WI, 53706
Get access

Abstract

The ability to create atomic-scale structures with the scanning tunneling microscope (STM) plays an important role in the development of a future nanoscale technology. I briefly review the various modes of STM-based fabrication and atomic manipulation. I focus on using a UHV-STM to directly pattern the Si(001) surface by atomic manipulation at room temperature. By carefully adjusting the tip morphology and pulse voltage, a single atomic layer can be removed from the sample surface to define features one atom deep. Segments of individual dimer rows can be removed to create structures with atomically straight edges and with lateral features as small as one dimer wide. Trenches ∼3 nm wide and 2–3 atomic layers deep can be created with less stringent control of patterning parameters. Direct patterning provides a straightforward route to the fabrication of nanoscale test structures under UHV conditions of cleanliness.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ferry, D.K., Akers, L.A., and Greeneich, E.W., Ultra Large Scale Interaged Microelectronics (Prentice Hall, New Jersey, 1988); for a lay introduction see C. T. Salling in QPi.g. Eghth Annual INEL Computing Symposium (Idaho National Engineering Laboratory, Idaho Falls, 1994).Google Scholar
2. Atomic and Nanometer-Scale Modification of Materials: Fundamentals and Applications; ed. Avouris, Ph. (Kluwer Academic, Boston, MA 1993).Google Scholar
3. Feynman, R. P., Engineering and Science- The Caltech Alumni Magazine, February 1960; reprinted in J. Microelcct. Systems 1, 60 (1992).Google Scholar
4. Binnig, G., Rohrer, H., Gerber, Ch., and Weibel, E., Appl. Phys. Lett. 40, 178 (1982); Phys. Rev. Lett. 50, 120 (1983).Google Scholar
5. Eigler, D. M. and Schweizer, E. K., Nature 344, 524 (1990).Google Scholar
6. Albrecht, T.R., Akamine, S., Zdeblick, M.J., and Quate, C.F., J. Vac. Sci. Technol. A8, 317 (1990).Google Scholar
7. McCord, M.A. and Pease, R.F.W., Appl. Phys. Lett. 50, 569 (1987).Google Scholar
8. van Loenen, E. J., Dijkkamp, D., Hoeven, A.J., Lenssinck, J.M., and Dieleman, J., Appl. Phys. Lett. 55 (1989).Google Scholar
9. Kim, Y. and Lieber, C.M., Science 257, 375 (1992).Google Scholar
10. Mc Cord, M.A. and Pease, R.F.W., J. Vac. Sci. Technol. B5 (1987) 430.Google Scholar
11. Dagata, J.A., Schneir, J., Harary, H.H., Evans, C.J., Postek, M.T., Bennett, J., Appl. Phys. Lett. 56, 2001 (1990).Google Scholar
12. For a recent survey of STM-based lithography see The Technology of Proximal Probe Lithography, ed. Marrion, C.R.K. (SPIE, Bellingham,WA 1993).Google Scholar
13. Lyding, J.W., Shen, T.-C., Hubacek, J.S., Tucker, J.R., and Abeln, G.C., Appl. Phys. Lett. 64, 2010 (1994).Google Scholar
14. Snow, E.S. and Campbell, P. M., Appl. Phys. Lett. 64 (1994) 1932.Google Scholar
15. Silver, R. M., Ehrichs, E.E., de Lozanne, A.L., Appl. Phys. Lett. 51, 247 (1987).Google Scholar
16. Thibaudau, F., Roche, J.R., and Salvan, F., Appl. Phys. Lett. 64, 523 (1994).Google Scholar
17. Foster, J.S., Frommer, J.E., and Arnett, P.C., Nature 331, 324 (1988).Google Scholar
18. Li, W., Virtanen, J.A., Penner, R.M., Appl. Phys. Lett. 60, 1181 (1992).Google Scholar
19. Dujardin, G., Walkup, R.E., and Avouris, Ph., Science 255, 1232 (1992).Google Scholar
20. Becker, R. S., Golovchenko, J. A., Swartzentruber, B. S., Nature 325, 419 (1987).Google Scholar
21. Eigler, D.M. and Schweizer, E.K., Nature 344, 524 (1990).Google Scholar
22. Stroscio, J. A. and Eigler, D. M., Science 254, 1319 (1991).Google Scholar
23. Crommie, M.F., Lutz, C.P., and Eigler, D.M., Science 262, 218 (1993).Google Scholar
24. Uchida, H., Huang, D. H., Yoshinobu, J. and Aono, M., Surf. Sci. 287/288, 1056 (1993).Google Scholar
25. Boland, J.J., Science 262, 1703 (1993).Google Scholar
26. Mo, Y. W., Science 261, 886 (1993).Google Scholar
27. Ph. Ebert and Urban, K., Ultramicroscopy 49, 344 (1993); Ph. Ebert, M. G. Lagally, and K. Urban, Phys. Rev. Lett. 70, 1437 (1993).Google Scholar
28. Lengal, G., Weimer, M., Gryko, J., and Allen, R.E. (unpublished).Google Scholar
29. Whitman, L. J., Stroscio, J.A., Dragoset, R.A., and Cellota, R.J., Science 251, 1206 (1991).Google Scholar
30. Ostrum, R.M., Tanenbaum, D.M., and Gallagher, A., Appl. Phys. Lett. 61, 925 (1992).Google Scholar
31. Iwatsuki, M., Kitamura, S., Sato, T., and Sueyoshi, T., Appl. Surf. Sci. 60/61, 580 (1992).Google Scholar
32. Mamin, H. J., Guethner, P. H. and Rugar, D., Phys. Rev. Lett. 65, 2418 (1990); H. J. Mamin, S. Chiang, H. Birk, P. H. Guethner, D. Rugar, J. Vac. Sci. Technol. B9, 1398 (1991).Google Scholar
33. Kuramochi, H., Uchida, H., and Aono, M., Phys. Rev. Lett. 72, 932 (1994).Google Scholar
34. Huang, D., Uchida, H., and Aono, M., J. Vac. Sci. Technol. B12, 2429 (1994).Google Scholar
35. Lyo, I.-W. and Avouris, Ph., Science 253, 173 (1991).Google Scholar
36. Kobayashi, A., Grey, F., Williams, R.S., and Aono, M., Science 259, 1724 (1993).Google Scholar
37. Aono, M., Kobayashi, A., Grey, F., Uchida, H., Huang, D., Jpn. J. Appl. Phys. 32, 1470 (1993).Google Scholar
38. Salling, C. T. and Lagally, M. G., Science 265, 502 (1994).Google Scholar
39. Hosoki, S., Hosaka, S., and Hasegawa, T., Appl. Surf. Sci. 60/61, 643 (1992).Google Scholar
40. Huang, J.-L., Sung, Y.-E., and Lieber, C.M., Appl. Phys. Lett. 61, 1528 (1992).Google Scholar
41. McBride, S.E. and Wetsel, G.C. Jr., Appl. Phys. Lett. 57, 2782 (1990); 59, 3056 (1991).Google Scholar
42. Rabe, J.P. and Buchholz, S., Appl. Phys. Lett. 58, 702 (1991).Google Scholar