Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T15:49:20.895Z Has data issue: false hasContentIssue false

Direct Imaging of Atomic Rearrangements on Extended Gold Surfaces

Published online by Cambridge University Press:  25 February 2011

David J. Smith
Affiliation:
Department of Metallurgy and Materials Science, University of Cambridge, Free School Lane, Cambridge, CB2 3RQ, England.
L. D. Marks
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287.
Get access

Abstract

Rearrangements of atomic columns on extended gold surfaces have been imaged directly using a 500kV high resolution electron microscope. The (100), (110) and (111) surface profiles were all found to be highly mobile and microscopically rough, with (111) in particular developing a characteristic hill-and-valley morphology. The presence of surface steps had a marked influence on the direction of surface diffusion only for the (100) surface. The observations establish that high-resolution profile imaging can provide unique information about surface self-diffusion which is unobtainable by other techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Smith, D.J., Helvetica Physica Acta. 56, 463 (1983).Google Scholar
[2] Marks, L.D., Surface Science, 139, 281 (1984).10.1016/0039-6028(84)90022-0CrossRefGoogle Scholar
[3] Marks, L.D. & Smith, D.J., Nature, 303, 316 (1983).10.1038/303316a0Google Scholar
[4] Marks, L.D., Phys. Rev. Letts. 51, 1000 (1983).10.1103/PhysRevLett.51.1000Google Scholar
[5] Smith, D.J. & Marks, L.D., in Proc. 7th Int. Conf. HVEM (Berkeley, 1983), Eds. Fisher, R.M., Westmacott, K. & Gronsky, R., pp. 5358.Google Scholar
[6] Marks, L.D. & Smith, D.J., Surface Sci. 143, 495 (1984).10.1016/0039-6028(84)90555-7CrossRefGoogle Scholar
[7] Smith, D.J. & Marks, L.D., Ultramicroscopy, in press.Google Scholar
[8] Briscoe, N.A. & Hutchison, J.L., Inst. Phys. Conf. Ser. 68, 249 (1983).Google Scholar
[9] Iijima, S., Japan. J. Appl. Phys. 23, L347 (1984).10.1143/JJAP.23.L347Google Scholar
[10] Sinclair, R., Yamashita, T. & Ponce, F.A., Nature, 290, 386 (1982).10.1038/290386a0CrossRefGoogle Scholar
[11] Smith, D.J., Camps, R.A., Cosslett, V.E., Freeman, L.A., Saxton, W.O., Nixon, W.C., Ahmed, H., Catto, C.J.D., Cleaver, J.R.A., Smith, K.C.A. & Timbs, A.E., Ultramicroscopy 9, 203 (1982).10.1016/0304-3991(82)90201-7CrossRefGoogle Scholar
[12] Marks, L.D. & Smith, D.J., submitted to Surface Science.Google Scholar
[13] Ehrlich, G., CRC Crit. Rev. Solid State Mat. Sci. 4, 205 (1974).10.1080/10408437308245825CrossRefGoogle Scholar
[14] Bonzel, H.P., CRC Crit. Rev. Solid State Mat. Sci. 6, 171 (1976).10.1080/10408437608243554CrossRefGoogle Scholar
[15] Ayrault, G. & Ehrlich, G., J. Chem. Phys. 60, 281 (1974).10.1063/1.1680781CrossRefGoogle Scholar
[16] Ehrlich, G. and Hudda, F.G., J. Chem. Phys. 44, 1039 (1966).10.1063/1.1726787Google Scholar
[17] Wagner, H., Springer Tracts of Modern Physics, 85, 151.Google Scholar