Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T15:34:27.868Z Has data issue: false hasContentIssue false

Direct growth of carbon nanotubes atom by atom during field emission

Published online by Cambridge University Press:  31 January 2011

Catherine Journet
Affiliation:
[email protected], Université Lyon 1, LPMCN, Villeurbanne, France
Mickaël Marchand
Affiliation:
[email protected], Université Lyon 1, LPMCN, Villeurbanne, France
Jean-Michel Benoit
Affiliation:
[email protected], Université Lyon 1, LPMCN, Villeurbanne, France
Boris I. Yakobson
Affiliation:
[email protected], Rice University, Rice University, Houston, Texas, United States
Stephen Thomas Purcell
Affiliation:
[email protected], Université Lyon 1, LPMCN, Villeurbanne, France
Get access

Abstract

We have designed a field emission microscope (FEM) coupled to a chemical vapor deposition (CVD) reactor in order to observe directly the growths of individual carbon nanotubes (CNTs) from the nucleation stage. Catalyst metals are first deposited in situ on a sharp metallic tip during direct FEM imaging and formed into nanoparticles by dewetting. CNTs are then grown directly on these nanoparticles by CVD in acetylene or other hydrocarbon gases at appropriate temperatures (600-900°C). The FEM patterns are formed by electrons emitted from individual CNT caps. The videos are analyzed to extract the growth rates and models. In situ field emission I/V measurements are also performed. The most interesting new discovery is that the CNTs often rotate axially during growth, thus strongly supporting a recently proposed model of ‘screw-dislocation-like’ (SDL) mechanism. The event is not rare as four rotating CNT growths versus six non-rotating growths were observed. In one case the CNT rotated quite uniformly ∼180 times during its 11 min growth. This observation should aid researchers to better understand and control the growth of SWNTs.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Ding, F., Harutyunyan, A. R., Yakobson, B. I., Proceedings of the National Academy of Sciences of the USA, 10.1073/pnas.0811946106 (2009).Google Scholar
2 Saito, R., Dresselhaus, G., Dresselhaus, M. S., Physical Properties of Carbon Nanotubes, Imperial College Press, World Scientific, Singapore (1998).Google Scholar
3 Loiseau, A., Launois, P., Petit, P., Roche, S., Salvetat, J. P., Understanding Carbon Nanotubes: from Science to Applications, Lectures Notes in Physics, Springer 677 (2006).Google Scholar
4 Gavillet, J., Loiseau, A., Journet, C., Willaime, F., Ducastelle, F., Charlier, J.-C., Phys. Rev. Lett. 87, 275504 (2001).Google Scholar
5 Amara, H., Bichara, C., Ducastelle, F., Phys. Rev. Lett. 100, 056105 (2008) and references therein.Google Scholar
6 Helveg, S., López-Cartes, C., Sehested, J., Hansen, P. L., Clausen, B. S., Rostrup-Nielsen, J. R., Abild-Pedersen, F., Nørskov, J. K., Nature 427, 426429 (2004).Google Scholar
7 Lin, M., Tan, J. Pei Ying, Boothroyd, C., Loh, K. P., Tok, E. S., Foo, Y.-L., Nano Lett. 6, 449452 (2006).Google Scholar
8 Hofmann, S., Sharma, R., Ducati, C., Du, G., Mattevi, C., Cepek, C., Cantoro, M., Pisana, S., Parvez, A., Ferrari, A. C., Dunin-Borkowski, R., Lizzit, S., Petaccia, L., Goldoni, A., Robertson, J., Nano Lett. 7, 602608 (2007).Google Scholar
9 Yoshida, H., Takeda, S., Uchiyama, T., Kohno, H., Homma, Y., Nano Lett. 8, 20822086 (2008).Google Scholar
10 Burton, W. K., Cabrera, N., Frank, F. C., Nature 163, 398399 (1949).Google Scholar
11 Gomer, R., Field Emission and Field Ionization, Harvard University Press, Cambridge (1961).Google Scholar
12 Bonard, J.-M., Croci, M., Conus, F., Stöckli, T., Chatelain, A., Appl. Phys. Lett., 81, 2836 (2002).Google Scholar
13 Dean, K. A., Allmen, P. von, Chalamala, B. R., J.Vac.Sci.Technol. B, 17, p.5 (1999)Google Scholar
14 Saito, R., Dresselhaus, G., Dresselhaus, M. S., J. App. Phys. 73, 494500 (1993).Google Scholar
15 Maiti, A., Brabec, C., Roland, C., Bernholc, J., Phys. Rev. Lett. 73, 24682471 (1994).Google Scholar
16 Charlier, J.-C., Vita, A. De, Blase, X., Car, R., Science 31, 647649 (1997).Google Scholar
17 Zhu, H., Suenaga, K., Hashimoto, A., Urita, K., Hata, K., Iijima, S., Small 1, 11801183 (2005).Google Scholar