Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T15:53:18.226Z Has data issue: false hasContentIssue false

Direct Comparison of Structural and Electrical Properties of Epitaxial (001)-, (116)-, and (103)-Oriented SrBi2Ta2O9 Thin Films on SrTiO3 and Silicon Substrates

Published online by Cambridge University Press:  21 March 2011

H. N. Lee
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
A. Pignolet
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
S. Senz
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
C. Harnagea
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
D. Hesse
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, D-06120 Halle/Saale, Germany
Get access

Abstract

Anisotropies of the properties of the bismuth-layered perovskite SrBi2Ta2O9 (SBT) have been investigated using epitaxial thin films grown by pulsed laser deposition both on conducting Nb-doped SrTiO3 (STO) single crystal substrates and on Si(100) substrates. It has been found that the three-dimensional epitaxy relationship SBT(001)∥STO(001); SBT [110] ∥STO[100] can be applied to all SBT thin films on STO substrates of (001), (011), and (111) orientations. An about 1.7 times larger remanent polarization was obtained in (103)-oriented SBT films than in that of (116) orientation, while the (001)-oriented SBT films revealed no ferroelectricity along their c-axis. Non-c-axis-oriented SBT films with a well-defined (116) orientation were also grown on silicon substrates for the first time. They were deposited on Si(100) covered with a conducting SrRuO3 (110) bottom electrode on a YSZ(100) buffer layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rae, A. D., Thompson, J. G., and Withers, R. L., Acta Cryst., B48, 418 (1992).10.1107/S0108768192001654Google Scholar
2. Gruverman, A., Appl. Phys. Lett., 75, 1452 (1999).10.1063/1.124722Google Scholar
3. Suzuki, T., Nishi, Y., Fujimoto, M., Ishikawa, K., and Funakubo, H., Jpn. J. Appl. Phys., 38, L1265 (1999); K.Ishikawa and H.Funakubo, Appl. Phys. Lett., 75, 1970 (1999).10.1143/JJAP.38.L1265Google Scholar
4. Lettieri, J., Zurbuchen, M. A., Jia, Y., Schlom, D. G., Streiffer, S. K., and Hawley, M. E., Appl. Phys. Lett., 76, 2937 (2000); ibid, 77, 3090 (2000).10.1063/1.126522Google Scholar
5. Lee, H. N., Visinoiu, A., Senz, S., Harnagea, C., Pignolet, A., Hesse, D., and Gösele, U., J. Appl. Phys., 88, 6658 (2000).Google Scholar
6. Lee, H. N., Senz, S., Visinoiu, A., Pignolet, A., Hesse, D., and Gösele, U., Applied Physics A, 71, 101 (2000); H. N.Lee, S.Senz, C.Harnagea, A.Pignolet, D.Hesse, and U. Gösele, Appl. Phys. Lett., 77, 3260 (2000).10.1007/s003390000583Google Scholar