Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T11:58:34.348Z Has data issue: false hasContentIssue false

A diminished thermal conductivity of Si/SiGe multilayers established through heating current frequency variation

Published online by Cambridge University Press:  31 January 2011

Alex Dooraghi
Affiliation:
[email protected], UC, San Diego, La Jolla, California, United States
Prabhakar Bandaru
Affiliation:
[email protected], UC, San Diego, 258, EBU 2, 9500 Gilman Drive, La Jolla, California, 92093, United States, (858) 534-5325
Dan Krommenhoek
Affiliation:
[email protected], Hi-Z Technology Inc., San Diego, California, United States
Norbert Elsner
Affiliation:
[email protected], Hi-Z Technology Inc., San Diego, California, United States
Get access

Abstract

We report on the measurement of the thermal conductivity of Si/Si0.8Ge0.2 multilayers on Si substrates through a variation of the 3? method. We exploit the frequency dependent variation of the thermal wave, through invoking the thermal penetration depth (TPD), which is inversely proportional to the frequency. Consequently, spectral measurements covering decades of frequency were used to finely probe the substrate and the overlying Si and Si0.8Ge0.2 thin film layers. Both in-phase and out-of phase measurements yielded comparable values of the thermal conductivity in the range of 3-5 W/mK, much lower than the reported bulk values. Our results provide proof of the potential of multilayered media to be used for reduced thermal conductance applications such as thermoelectrics, heat insulation etc.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hicks, L. D. Harman, T. C. and Dresselhaus, M. S. Applied Physics Letters 63, 32303232 (1993).Google Scholar
2 Hicks, L. D. and Dresselhaus, M. S. Physical Review B: Condensed Matter 47, 272712731 (1993).Google Scholar
3 Pichanusakorn, P. and Bandaru, P. R. Materials Science and Engineering: R: Reports : Reports, in press (2009).Google Scholar
4 Sun, X. Cronin, S. B. Liu, J. Wang, K. L. Koga, T. Dresselhaus, M. S. and Chen, G. in Experimental Study of the Effect of the Quantum Well Structures on the Thermoelectric Figure of Merit in Si/Si Si1-xGex System System, 1999 (IEEE).Google Scholar
5 Hicks, L. D. Harman, T. C. Sun, X. and Dresselhaus, M. S. Physical Review B 53, R10493–R10496 (1996).Google Scholar
6 Kittel, C. Introduction to Solid State Physics (John Wiley, New York, 1996).Google Scholar
7 Poudel, B. Hao, Q. H, Ma, Y. Lan, Y. Minnich, A. Yu, B. Yan, X. Wang, D. Muto, A. Vashaee, D., Chen, X. Liu, J. Dresselhaus, M. S. Chen, G. and Ren, Z. Science 320, 634638 (2008).Google Scholar
8 Hsu, K. F. Loo, S. Guo, F. Chen, W. Dyck, J. S. Uher, C. Hogan, T. Polychroniadis, E. K., and Kanatzidis, M. G. Science 303, 818821 (2004).Google Scholar
9 Venkatasubramanian, R. Siivola, E. Colpitts, T. and O'Quinn, B., Nature 413, 597602 (2001).Google Scholar
10 Hochbaum, A. I. Chen, R. Delgado, R. D. Liang, W. Garnett, E. C. Najarian, M. Majumdar, A., and Yang, P. Nature 451, 163167 (2008).Google Scholar
11 Chen, G. Tien, C. C.-L., Wu, X. and Smith, J. S. Journal of Heat Transfer 116, 325 325331 (1994).Google Scholar
12 Yao, T. Applied Physics Letters 51, 17981800 (1987).Google Scholar
13 Lee, S. M., Cahill, D. G. Venkatasubramanian, R., Applied Physics Letters 70, 29572959 (1997).Google Scholar
14 Cahill, D. G., Review of Scientific Instruments. 61, 802808 (1990).Google Scholar
15 Borca-Tasciuc, T., Kumar, A. R. and Chen, G. Review of Scientific Instruments 72, 21392147 (2001).Google Scholar
16 Raudzis, C. E. Schatz, F. and Wharam, D. Journal of Applied Physics 93, 60506055 (2003).Google Scholar
17 Huxtable, S. T. Abramson, A. R. Tien, C. C.-L., Majumdar, A. LaBounty, C. Fan, X. Zeng, G., Bowers, J. E. Shakouri, A. and Croke, E. T. Applied Physics Letters 80, 17371739 (2002).Google Scholar
18 Borca-Tasciuc, T. Borca, Liu, W. Liu, J. Zeng, T. Song, D. W. Moore, C. D. Chen, G. Wang, K. L., Goorsky, M. Radetic, T. Gronsky, R. Koga, T. and Dresselhaus, M. S. Superlattices and Microstructures 28, 199206 (2000).Google Scholar
19 Koh, Y. K. and Cahill, D. G. Physical Review B (Condensed Matter and Materials Physics) 76, 075207 (2007).Google Scholar