Published online by Cambridge University Press: 28 February 2011
The diffusivities of oxygen in Czochralski Si (CZ-Si) and float-zone Si (FZ-Si) have been measured by using secondary ion mass spectrometry. The diffusivity at 700–1160°C deduced from the outdiffused profiles of oxygen incorporated in CZ-Si shows little or no dependence on processing conditions and can be expressed as D = 0.14 exp(−2.53 eV/kT) cm2/s. Diffusivity at 700–1100°C of oxygen implanted in FZ-Si is insensitive to doses and follows D = 0.13 exp(−2.50 eV/kT) cm2/s, which agrees remarkably well with CZ-Si data. Since large variations in point-defect concentrations existed under the conditions studied, the excellent agreement among the diffusivities leads to the conclusion that point defects in Si have little effect on oxygen diffusion. This demonstrates that oxygen diffuses primarily via an interstitial mechanism in the temperature range studied.