Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T10:22:46.190Z Has data issue: false hasContentIssue false

Diffusion-Controlled Reactions in Micellar Systems

Published online by Cambridge University Press:  15 February 2011

Masanori Tachiya
Affiliation:
National Institute of Materials and Chemical Research, Department of Physical Chemistry Tsukuba, Ibaraki 305, Japan Also affiliated with the University of Tsukuba, Department of Chemistry
Alexander V. Barzykin
Affiliation:
National Institute of Materials and Chemical Research, Department of Physical Chemistry Tsukuba, Ibaraki 305, Japan On leave from the Institute of Chemical Physics at Chemogolovka, Russia
Get access

Abstract

Reaction kinetics in micellar solutions are studied theoretically with an emphasis on diffusioncontrolled luminescence quenching. Different spatial arrangements of reactants within individual micelles are analyzed and a general method for treating diffusion-controlled reactions in a finite volume employing an effective potential approximation is developed. Several models are considered for the exchange of reactants between micelles including migration mediated by the bulk phase and successive multiparticle hopping through transient channels connecting micelles during their sticky collisions. These results are combined in a general stochastic theory of reaction kinetics in micellar solutions with exchange. The theory is further extended to reactions in clusters of micelles using a continuous time random walk approach. Once the principal features of micellar kinetics are understood, one can extract important structural and dynamic information on the aggregates and their guest molecules by analyzing suitably designed experiments.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Fendler, J.H., Membrane Mimetic Chemistry (Wiley, New York, 1982).Google Scholar
2. Kalyanasundaram, K., Photochemistry in Microheterogeneous Systems (Academic Press, Orlando, 1987).Google Scholar
3. Ramamurthy, V., Weiss, R.G., and Hammond, G.S., Adv. Photochem. 18, 67 (1993).Google Scholar
4. Zana, R., in Surfactant Solutions: New Methods of Investigation, edited by Zana, R. (Sufactant Sci. Ser. 22. Marcel Dekker, New York, 1987), p. 241.Google Scholar
5. Van der Auweraer, M., De Schryver, F.C., in Structure and Reactivity in Reverse Micelles, edited by Pileni, M.P. (Elsevier, Amsterdam, 1989), p. 70.Google Scholar
6. Almgren, M., in Kinetics and catalysis in nicroheterogeneous systems, edited by Grätzel, M., Kalyanasundaram, K. (Surfactant Sci. Ser. 38, Marcel Dekker, New York, 1991), p. 63.Google Scholar
7. Gehlen, M.H. and De Schryver, F.C., Chem. Rev. 93, 199 (1993).Google Scholar
8. Turro, N.J., Grätzel, M., and Braun, A.M., Angew. Chem. Int. Ed. Engl. 19, 675 (1980).Google Scholar
9. Cao, T., Munk, P., Ramireddy, C., Tuzar, Z., and Webber, S.E., Macromolecules 24,6300 (1991).Google Scholar
10. Chen, S.-H., Chang, S.-L., and Strey, R., J. Chem. Phys. 93, 1907 (1990).Google Scholar
11. Aniansson, E.A.G., Wall, S.N., Almgren, M., Hoffmann, H., Kielmann, I., Ulbricht, W., Zana, R., Lang, J., and Tondre, C., J. Phys. Chem. 80, 905 (1976).Google Scholar
12. Danov, K.D., Denkov, N.D., Petsev, D.N., Ivanov, I.B., and Borwankar, R., Langmuir 9, 1731 (1993).Google Scholar
13. Lang, J., Zana, R., and Candau, S., Ann. Chim. 77, 103 (1987).Google Scholar
14. Fletcher, P.D.I. and Horsup, D.I, J. Chem. Soc. Faraday Trans. 88, 855 (1992).Google Scholar
15. Tachiya, M., in Kinetics of Nonhomogeneous Processes, edited by Freeman, G.R. (Wiley, New York, 1987), p.575 Google Scholar
16. Almgren, M., Adv. Colloid Interface Sci. 41, 9 (1992).Google Scholar
17. Tachiya, M., Radiat. Phys. Chem. 21, 167 (1983).Google Scholar
18. Tachiya, M., Chem. Phys. Lett. 69, 605 (1980).Google Scholar
19. Hatlee, M.D., Kozak, J.J., Rothenberger, G., Infelta, P.P., and Grätzel, M., J. Phys. Chem. 84, 1508 (1980).Google Scholar
20. Sano, H. and Tachiya, M., J. Chem. Phys. 75, 2870 (1981).Google Scholar
21. Van der Auweraer, M., Dederen, J.C., Geladé, E., and De Schryver, F.C., J. Chem. Phys. 74, 1140 (1981).Google Scholar
22. Gösele, U., Klein, U.K.A., and Hauser, M., Chem. Phys. Lett. 68, 291 (1979).Google Scholar
23. Rothenberger, G. and Grätzel, M., Chem. Phys. Lett. 154, 165 (1989).Google Scholar
24. Barzykin, A.V. and Tachiya, M., J. Chem. Phys. 99, 7762 (1993).Google Scholar
25. Szabo, A., Schulten, K., and Schulten, Z., J. Chem. Phys. 72,4350 (1980).Google Scholar
26. Barzykin, A.V., Chem. Phys. 155, 221 (1991).Google Scholar
27. Berberan-Santos, M.N. and Prieto, M.J.E., J. Chem. Soc. Faraday Trans. 2 83, 1391 (1987).Google Scholar
28. McQuarrie, D.A., Jachimowski, C.J., and Russel, M.E., J. Chem. Phys. 40, 2914 (1964).Google Scholar
29. Barzykin, A.V., Chem. Phys. 161, 63 (1992).Google Scholar
30. Güémez, J.G, Velasco, S., and Hern´ndez, A.C., Physica A 152, 243 (1988).Google Scholar
31. Tachiya, M., Chem. Phys. Lett. 33, 289 (1975).Google Scholar
32. Barzykin, A.V. and Tachiya, M., Chem. Phys. Lett. 216, 575 (1993).Google Scholar
33. Almgren, M., Löfroth, J.E., and Stam, J. Van, J. Phys. Chem. 90,4431 (1986).Google Scholar
34. Hunter, T.F., Chem. Phys. Lett. 75, 152 (1980).Google Scholar
35. Barzykin, A.V. and Tachiya, M., J. Phys. Chem. 98, 2677 (1994).Google Scholar
36. McQuarrie, D.A., Adv. Chem. Phys. 15, 149 (1969).Google Scholar
37. Infelta, P.P., Grätzel, M., and Thomas, J.K., J. Phys. Chem. 78, 190 (1974).Google Scholar
38. Tachiya, M., Can. J. Phys. 68, 979 (1990).Google Scholar
39. Gehlen, M.H., Van der Auweraer, M., and De Schryver, F.C., Photochem. Photobiol. 54, 613 (1991).Google Scholar
40. Gehlen, M.H., Van der Auweraer, M., Reekmans, S., Neumann, M.G., and De Schryver, F.C., J. Phys. Chem. 95, 5684 (1991).Google Scholar
41. Barzykin, A.V., Chem. Phys. Lett. 189, 321 (1992).Google Scholar
42. Gehlen, M.H., Van der Auweraer, M., and De Schryver, F.C., Langmuir 8, 64 (1992).Google Scholar
43. Barzykin, A.V. and Lednev, I.K., J. Phys. Chem. 97, 2774 (1993).Google Scholar
44. Tachiya, M. and Almgren, M., J. Chem. Phys. 75, 865 (1981).Google Scholar
45. Hatton, T.A., Bommarius, A.S., and Holzwarth, J.F., Langmuir 9, 1241 (1993).Google Scholar
46. Maitra, A., Mathew, C., and Varshney, M., J. Phys. Chem. 94, 5290 (1990).Google Scholar
47. Zhang, J., Fulton, J.L., and Smith, R.D., J. Phys. Chem. 97, 12331 (1993).Google Scholar
48. Jóhannsson, R., Almgren, M., and Alsins, J., J. Phys. Chem. 95, 3819 (1991).Google Scholar
49. Almgren, M. and Jóhannsson, R., J. Phys. Chem. 96, 9512 (1992).Google Scholar
50. Vollmer, D., Vollmer, J., and Eicke, H.-F., Europhys. Lett. 26, 389 (1994).Google Scholar
51. Lindman, B. and Wennerström, H., J. Phys. Chem. 95, 6053 (1991).Google Scholar
52. Barzykin, A.V. and Tachiya, M., J. Phys. Chem. 98, 9950 (1994).Google Scholar
53. Gehlen, M.H., Chem. Phys. Lett. 212, 362 (1993).Google Scholar
54. Barzykin, A.V. and Tachiya, M., Phys. Rev. Lett. (in press).Google Scholar
55. Blumen, A., Zumofen, G., and Klafter, J., Phys. Rev. B 30, 5379 (1984).Google Scholar
56. Montroll, E.W. and Weiss, G.H., J. Math. Phys. 6, 167 (1965).Google Scholar
57. Zumofen, G., Blumen, A., and Klafter, J., J. Chem. Phys. 82, 3198 (1985).Google Scholar
58. Barzykin, A.V. and Tachiya, M., J. Chem. Phys. 99, 9591 (1993).Google Scholar
59. Havlin, S. and Ben-Avraham, D., Adv. Phys. 36, 695 (1987).Google Scholar
60. Blumen, A., Klafter, J., White, B.S., and Zumofen, G., Phys. Rev. Lett. 53, 1301 (1984).Google Scholar
61. Tachiya, M., J. Chem. Phys. 76, 340 (1982).Google Scholar
62. Barzykin, A.V., J. Phys. Chem. 96, 9074 (1992).Google Scholar
63. Almgren, M., Alsins, J., Van Stam, J., and Mukhtar, E., Prog. Colloid Polym. Sci. 76, 68 (1988).Google Scholar
64. Warr, G.G., Magid, L., Caponetti, E., and Martin, G., Langmuir 4, 813 (1988).Google Scholar
65. Almgren, M. and Lbfroth, J.E., J. Chem. Phys. 76, 2734 (1982).Google Scholar
66. Warr, G.G. and Grieser, F., J. Chem. Soc. Faraday Trans. 1 82, 1825 (1986).Google Scholar
67. Van der Auweraer, M. and De Schryver, P.C., Chem. Phys. 111, 105 (1987).Google Scholar
68. Van der Auweraer, M., Reekmans, S., Boens, N., and De Schryver, F.C., Chem. Phys. 132, 91 (1989).Google Scholar
69. Alsins, J. and Almgren, M., J. Phys. Chem. 94, 3062 (1990).Google Scholar
70. Almgren, M., Alsins, J., Mukhtar, E., and Van Stam, J., J. Phys. Chem. 92, 4479 (1988).Google Scholar
71. Bratko, D., Woodward, C.E., and Luzar, A., J. Chem. Phys. 95, 5318 (1991).Google Scholar
72. Barzykin, A.V. and Tachiya, M., Chem. Phys. Lett. 221, 81 (1994).Google Scholar
73. Berberan-Santos, M.N., Prieto, M.J.E., and Szabo, A.G., J. Chem. Soc. Faraday Trans. 88, 255 (1992).Google Scholar
74. Drake, J.M., Klafter, J., and Levitz, P., Science 251, 1574 (1991).Google Scholar
75. Ediger, M.D., Domingue, R.P., and Fayer, M.D., J. Chem. Phys. 80, 1246 (1984).Google Scholar
76. Finger, K.U., Marcus, A.H., and Fayer, M.D., J. Chem. Phys. 100, 271 (1994).Google Scholar
77. Barzykin, A.V., Barzykina, N.S., and Fox, M.A., Chem. Phys. 163, 1 (1992).Google Scholar
78. Barzykin, A.V. and Tachiya, M., J. Chem. Phys. (in press).Google Scholar