Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:43:28.611Z Has data issue: false hasContentIssue false

Diffusional Asymmetry in Amorphous Alloys:Implications for Interfacial Reactions

Published online by Cambridge University Press:  21 February 2011

A.L. Greer
Affiliation:
University of Cambridge, Department of Materials Science and Met allurgy, Pembroke Street. Cambridge CB2 3QZ, U.K.
K. Dyrbye
Affiliation:
University of Cambridge, Department of Materials Science and Met allurgy, Pembroke Street. Cambridge CB2 3QZ, U.K.
L.-U. Aaen Andersen
Affiliation:
University of Aarhus, Institute of Physics, DK-8000 Aarhus C, Denmark.
R. E. Somekh
Affiliation:
University of Cambridge, Department of Materials Science and Met allurgy, Pembroke Street. Cambridge CB2 3QZ, U.K.
J. Bøtiger
Affiliation:
University of Aarhus, Institute of Physics, DK-8000 Aarhus C, Denmark.
J. Janting
Affiliation:
University of Aarhus, Institute of Physics, DK-8000 Aarhus C, Denmark.
Get access

Abstract

Earlyllate transition metal systems such as Ni-Zr and Co-Zr exhibit solid state amorphization (SSA) in which the amorphous phase is formed by reaction between the crystalline elements. The rate of the amorphization is governed by the diffusion of the faster species, Ni or Co. Here results are presented on the homogenization of compositionally modulated thin films which show that the Zr diffusion is up to 106 times slower. The difference in diffusivities is correlated with atomic size. The consequences of the marked diffusional asymmetry are considered, particularly for the interpretation of results on the indiffusion of Co into amorphous Co-Zr. It is proposed that for amorphous alloys such as Ni-Zr and Co-Zr, changes in composition by rapid diffusion of Ni or Co can yield structures which are not in internal equilibrium. This would affect, for example, the validity of the common tangent construction as applied to predict the limiting compositions of the amorphous phase in contact with the elemental layers during SSA.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ottaviani, G., J. Vac. Sci. Technol. 16, 1112 (1979).Google Scholar
2. Gösele, U. and Tu, K.N., J. Appl. Phys. 53, 3252 (1982).Google Scholar
3. Herd, S.R., Tu, K.N. and Ahn, K.Y., Appl. Phys. Lett. 42, 597 (1983).Google Scholar
4. Highmore, R.J., Greer, A.L., Leake, J.A. and Evetts, J.E., Mater. Lett. 6, 401 (1988).Google Scholar
5. Schwarz, R.B. and Johnson, W.L., Phys. Rev. Lett. 51, 415 (1983).Google Scholar
6. Clemens, B.M., Johnson, W.L. and Schwarz, R.B., J. Non-Cryst. Solids 61/62, 817 (1984).Google Scholar
7. Barbour, J.C., Phys. Rev. Lett. 55, 2872 (1985).Google Scholar
8. Cotts, E.J., Meng, W.J. and Johnson, W.L., Phys. Rev. Lett. 57, 2295 (1986).Google Scholar
9. Highmore, R.J., Evetts, J.E., Greer, A.L. and Somekh, R.E., Appl. Phys. Lett. 50, 566 (1987).Google Scholar
10. Hahn, H., Averback, R.S. and Rothman, S.J., Phys. Rev. B 33, 8825 (1986).Google Scholar
11. Cheng, Y.-T., Johnson, W.L. and Nicolet, M.-A., Appl. Phys. Lett. 47, 800 (1985).Google Scholar
12. Greer, A.L. and Spaepen, F., in Synthetic Modulated Structures, edited by Chang, L.L. and Giessen, B.C. (Academic Press, New York, 1985), p. 419.Google Scholar
13. Walser, R.M. and Bené, R.W., Appl. Phys. Lett. 28, 624 (1976).Google Scholar
14. Kijek, M., Ahmadzadeh, M., Cantor, B. and Cahn, R.W., Scripta Metall. 14, 1337 (1980).Google Scholar
15. Hahn, H., Averback, R.S. and Shyu, H.-M., J. Less-Common Metals 140, 345 (1988).Google Scholar
16. Cantor, B. and Cahn, R.W., Amorphous Metallic Alloys, edited by Luborsky, F.E. (Butterworths, London, 1983), p. 487.Google Scholar
17. Greer, A.L., J. Non-Cryst. Solids 61/62, 737 (1984).Google Scholar
18. Sharma, S.K., Banerjee, S., Kuldeep, and Jain, A.K., J. Mater. Res. 4, 603 (1989).Google Scholar
19. Bottiger, J., Dyrbye, K., Pampus, K., Torp, B. and Wiene, P.H., Phys. Rev. B 37, 9951 (1988).Google Scholar
20. Akhtar, D., Cantor, B. and Cahn, R.W., Scripta Metall. 16, 417 (1982).Google Scholar
21. Horváth, J., Pfahler, K., Ulfert, W., Frank, W. and Kronmüller, H., Proc. Int. Conf. on Vacancies and Interstitials in Metals and Alloys, Berlin 1986.Google Scholar
22. Greer, A.L., Scripta Metall. 20, 457 (1986).Google Scholar
23. Rossum, M. Van, Nicolet, M.-A. and Johnson, W.L., Phys. Rev. B 29, 5498 (1984).Google Scholar
24. Dyrbye, K., Somekh, R.E. and Greer, A.L., to be published.Google Scholar
25. Andersen, L.-U. Aaen, Bøttiger, J., Greer, A.L., Somekh, R.E. and Janting, J., to be published.Google Scholar
26. Somekh, R.E., Highmore, R.J., Page, K., Home, R.J. and Barber, Z.H., MRS Symp. Proc. 103, 29 (1988).Google Scholar
27. Somekh, R.E. and Barber, Z.H., J. Phys. E, Sci. Instrum. 21, 1029 (1988).Google Scholar
28. Taub, A.I. and Spaepen, F., Acta Metall. 28, 1781 (1980).Google Scholar
29. Turnbull, D. and Cohen, M.H., J. Chem. Phys. 52, 3038 (1970).Google Scholar
30. Schröder, H., Samwer, K. and Köster, U., Phys. Rev. Lett. 54, 197 (1985).Google Scholar
31. Pampus, K., Bottiger, J., Dyrbye, K., Torp, B. and Samwer, K., Mater. Sci. Eng. 97, 97 (1988).Google Scholar
32. Ström-Olsen, J.O., Brilning, R., Altounian, Z. and Ryan, D.H., J. Less-Common Metals, 145, 327 (1988).Google Scholar
33. Stephenson, G.B., J. Non-Cryst. Solids, 66, 393 (1984).Google Scholar
34. Larché, F. and Cahn, J.W., Acta Metall. 21, 1051 (1973).Google Scholar
35. Bøttiger, J., Dyrbye, K., Pampus, K. and Torp, B., Int. J. Rapid Solidification 2, 191 (1986).Google Scholar
36. Akhtar, D., Cantor, B. and Cahn, R.W., Acta Metall. 30, 1571 (1982).Google Scholar