Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T19:29:33.576Z Has data issue: false hasContentIssue false

Diffusion Measurements by Analytical Electron Microscopy

Published online by Cambridge University Press:  25 February 2011

A. D. Romig Jr.*
Affiliation:
Sandia National Laboratories, Physical Metallurgy Division, Albuquerque, NM 87185
Get access

Abstract

The analytical electron microscope (AEM) has been used to measure the concentration gradients which form in single and multiphase diffusion couples. The procedures used to collect x-ray microanalytical data and reduce that data to elemental compositions are typical of those used to quantify x-ray data generated in thin films. The primary difficulty in analyzing diffusion couples with the AEM is sample preparation. The principle advantage of the AEM as a tool to measure diffusion induced concentration gradients is its high spatial resolution, approximately 20 to 100 times better than that of the electron microprobe which has been traditionally used to measure these concentration profiles. As a consequence, the AEM data can yield diffusivities as much as 5 orders of magnitude smaller than those obtained from electron microprobe data. This paper will review the fundamental principles of the determination of diffusion coefficients from the concentration gradients measured in single and multiphase diffusion couples and the basic considerations of thin foil x-ray microanalysis. With this understanding of the basic concepts, recent studies of diffusion in Ta-W and U-Nb will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Goldstein, J. I., Notis, M. R. and Romig, A. D. Jr.,, in Diffusion in Solids, ed. Dayananda, M. A. and Murch, G. E., (AIME-TMS, 1985),167.Google Scholar
2. Boltzmann, L., Ann Alen Der Physik und Chemie 53, 959 (1894)Google Scholar
3. Matano, C., Jap. J. Phys. 8, 109 (1932)Google Scholar
4. Wagner, C., Acta Metall. 17 99 (1969)Google Scholar
5. Sauer, F. and Freise, V., Z. Elektrochem. 66, 353 (1962)Google Scholar
6. Smigelskas, A. and Kirkendall, E., Trans. AIME 171, 130 (1947)Google Scholar
7. Darken, L. S., Trans. AIME 175, 194 (1948)Google Scholar
8. Jost, W., Diffusion, (Oxford at the Clarion Press, 1960)Google Scholar
9. Crank, J., Mathematics of Diffusion, (Oxford at the Clarion Press, 1975)Google Scholar
10. Kirkaldy, J. S., Can. J. Phys. 35, 435 (1957)Google Scholar
11. Kirkaldy, J. S., Can. J. Phys. 36, 899 (1958)CrossRefGoogle Scholar
12. Kirkaldy, J. S., Can. J. Phys. 37, 30 (1959)Google Scholar
13. Kirkaldy, J. S., et al., Can. J. Phys. 44, 2174 (1963)Google Scholar
14. Kirkaldy, J. S., et al., Can. J. Phys. 47, 2059 (1966)CrossRefGoogle Scholar
15. Heyward, T. R. and Goldstein, J. I., Metall. Trans. 4, 2335 (1973)CrossRefGoogle Scholar
16. Ziebold, T. O., Ph.D. Thesis, MIT, Cambridge MA (1965)Google Scholar
17. Shewmon, P. G., Diffusion (McGraw-Hill, New York, 1963)Google Scholar
18. Kirkaldy, J. S., Can. J. Phys. 36, 917 (1958)CrossRefGoogle Scholar
19. Romig, A. D., Jr. and Goldstein, J. I., Metall. Trans. 14A, 1224 (1983)CrossRefGoogle Scholar
20. Appel, M., Scripta Metall. 2, 217 (1968)CrossRefGoogle Scholar
21. Romig, A. D., Jr. and Goldstein, J. I., Metall. Trans. 12A, 243 (1981)Google Scholar
22. Narayan, C. and Goldstein, J. I., Metall. Trans. 14A, 2437 (1983)Google Scholar
23. Kittel, J. H., ANL-4937 (1949)Google Scholar
24. Peterson, N. L. and Ogilvie, R. E., Trans. AIME 218, 439 (1960)Google Scholar
25. Peterson, N. L. and Ogilvie, R. E., Trans. AIME 227, 1083 (1963)Google Scholar
26. Romig, A. D., Jr., J. Appl. Phys. 54, 3172 (1983)Google Scholar
27. Romig, A. D., Jr. and Cieslak, M. J., J. Appl. Phys. 56, 3425 (1985)Google Scholar
28. Cliff, G. and Lorimer, G. W., J. Micros. 103, 203 (1975)Google Scholar
29. Goldstein, J. I., Lorimer, G. W. and Reed, S. J. B., JE/977I, 315 (1977)Google Scholar
30. Romig, A. D., Jr., SAND82-2938 (1983)Google Scholar
31. Romig, A. D., Jr., Metall. Trans., to be submitted (1986)Google Scholar
32. Dean, D. C. and Goldstein, J. I., Metall. Trans., submitted (1985)Google Scholar
33. Nichols, A. W. and Jones, I. P., J. Phys. Chem. Solids 44, 671 (1983)CrossRefGoogle Scholar
34. Ivanov, A. N., Krasil'nikova, G. B. and Mitin, B. S., Fiz. Metal. Metallov. 29, 215 (1970)Google Scholar
35. Nechiporenko, Y. P., Krivoruchko, V. M., Mitrofanov, A. S. and Kondratov, Y. T., Fiz. Metal. Metallov. 32, 86 (1971)Google Scholar
36. Pawel, R. E. and Lundy, T. S., Acta Metall. 17, 979 (1969)Google Scholar
37. Rogers, B. A., Atkins, D. F., Manthos, E. J. and Kirkpatrick, M.E., Trans. AIME 215, 173 (1959)Google Scholar
38. Romig, A. D., Jr. and Sorenson, W. R., J. Micros. 132, 203 (1983)Google Scholar
39. Romig, A. D., Jr., J. Micros. 135, 191 (1984)Google Scholar
40. Romig, A. D., Jr. and Goldstein, J. I., Metall. Trans. 11A, 1151 (1980)Google Scholar
41. Romig, A. D., Jr. and Goldstein, J. I., Metall. Trans. 9A, 1599 (1978)Google Scholar