Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-05T15:51:23.141Z Has data issue: false hasContentIssue false

Diffusion Lengths in a-Si:H/a-Sic:H and a-Si:H/a-Sige:H Multilayers Determined by the Grating Method

Published online by Cambridge University Press:  16 February 2011

Norbert Bernhard
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Gottfried H. Bauer
Affiliation:
Institut für Physikalische Elektronik, Universität Stuttgart, Pfaffenwaldring 47, D-70569 Stuttgart, Germany
Get access

Abstract

The technique of the steady-state photocarrier grating (SSPG) has been applied to different series of a-Si:H/a-Si1-xCx:H and a-Si:H/a-Si1-xGex:H Multilayers. In dependence on the electronic well and barrier widths of the Multilayers, characteristic changes of the measured ambipolar diffusion lengths Lambi have been found. The general trend of Lambi can be understood in terms of interface recombination and scattering, when the mean composition of the multilayers is kept constant. In some cases, values of Lambi of multilayers were higher than the corresponding value of a homogeneous a-Si:H reference layer, a fact which might be explained by a dimensional effect. The effect in a-Si:H/a-Si1-xCx:H Multilayers was reduced with green HeNe-laser illumination with photon energies above the Taue gap of the barrier Material, instead of a red illumination generating photocarriers only in the potential wells.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ritter, D., Zeldov, E. and Weiser, K., Appl. Phys. Lett. 49, 791 (1986)Google Scholar
2. Balberg, I., Epstein, K. A. and Ritter, D., Appl. Phys. Lett. 54, 2461 (1989)Google Scholar
3. Bauer, G. H., Nebel, C.E. and Bloss, W. H., Proc. 8th EC Photovoltaic Solar Energy Conf., edited by Solomon, I. et al. (Kluwer, Dordrecht, 1988) pp. 729733 Google Scholar
4. Mohring, H.-D., Abel, C.-D., Brüggemann, R. and Bauer, G. H., J. Non-Cryst. Sol. 137&138, 847 (1991)Google Scholar
5. Schwarz, R., Wang, F., Eigenschenk, R., Bollu, M., Kopetzky, W. and Bernhard, N., Super-lattices & Microstructures 10, 147 (1991)CrossRefGoogle Scholar
6. Wang, F., Muschik, T., Fischer, T., Bollu, M., Kolodzey, J. and Schwarz, R., J. Non-Cryst. Sol. 137&138, 1143 (1991)Google Scholar
7. Bernhard, N., Dittrich, H. and Bauer, G. H., J. Non-Cryst. Sol. 137&138, 1103 (1991)Google Scholar
8. Bernhard, N. and Bauer, G. H., in Amorphous Silicon Technology, edited by Thompson, M. J. et al. (Mater. Res. Soc. Proc. 258, Pittsburgh, 1992) pp. 541546 Google Scholar