Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T18:51:34.400Z Has data issue: false hasContentIssue false

Diffusion, Drift, and Recombination of Holes In a-Si:H

Published online by Cambridge University Press:  15 February 2011

R. Schwarz
Affiliation:
Physics Department E16, Technical University of Munich, D-85747 Garching, Germany
F. Wang
Affiliation:
Physics Department E16, Technical University of Munich, D-85747 Garching, Germany
S. Grebner
Affiliation:
Physics Department E16, Technical University of Munich, D-85747 Garching, Germany
Q. Gu
Affiliation:
Physics Department, Syracuse University, Syracuse, NY 13244–1130, U.S.A.
E. A. Schiff
Affiliation:
Physics Department, Syracuse University, Syracuse, NY 13244–1130, U.S.A.
Get access

Abstract

We compare measurements in a-Si:H of ambipolar diffusion length Lamb (from steady-state photocarrier gratings (SSPG)) and hole drift Χ (t) (from time-of-flight (TOF)). Using the response time tR from small-signal photocurrent decay measurements, we find that the equation L2amb = 2 (kT/e) Χ (tR) /E is consistent with the measurements, where E is the electric field inducing hole drift in TOF. Several samples under different temperature and light intensity levels have been studied. This equation has several implications. Under the usual SSPG illumination conditions, electron-hole recombination occurs while holes are still occupying valence bandtail states; hence SSPG is not sensitive to hole capture by deep levels. Furthermore, the experiments show that the Einstein relation is valid for holes in a-Si:H. We are unaware of prior direct tests of this relation in an amorphous semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Pautmeier, L., Richert, R., Baessler, H., Phil. Mag. Lett. 59 (1989) 325.Google Scholar
2. Baessler, H., phys. stat. sol. (b) 175 (1993) 15.Google Scholar
3. Schiff, E.A., Phil. Mag. Lett. 55 (1987) 87.Google Scholar
4. Kocka, J., Nebel, C.E., and Abel, C.-D., Phil. Mag. B 63 (1991) 221.Google Scholar
5. Antoniadis, H. and Schiff, E.A., J. Non-Cryst. Solids 137&138 (1991) 435.Google Scholar
6. Liu, J.Z., Maruyama, A., Wagner, S., and Delahoy, A., J. Non-Cryst. Sol. 114 (1989) 363.Google Scholar
7. Wagner, S., Chu, V., Conde, J.P., and Liu, J.Z., J. Non-Cryst. Sol. 114 (1989) 453.Google Scholar
8. Nebel, C.E., Bauer, G.H., Gorn, M., and Lechner, P., Proc. Europ. Photovoltaic Solar Energy Conf., Freiburg 1989.Google Scholar
9. Gu, Q., Wang, Q., and Schiff, E.A., J. Appl. Phys. 76 (1994) 2310.Google Scholar
10. Ritter, D., Zeldov, E., and Weiser, K., Appl. Phys. Lett. 49 (1986) 791.Google Scholar
11. Ritter, D., Weiser, K., and Zeldov, E., J. Appl. Phys. 62 (1987) 4563.Google Scholar
12. Wang, Q., Antoniadis, H., Schiff, E.A., and Guha, S., Phys. Rev. B 47 (1993) 9435.Google Scholar
13. Wang, F. and Schwarz, R., Appl. Phys. Lett. 65 (1994) 884.Google Scholar
14. Hoheisel, M. and Fuhs, W., Phil. Mag. B 57 (1988) 411.Google Scholar
15. Wang, F. and Schwarz, R., to be published.Google Scholar
16. Fritzsche, H., Tran, M.Q., Yoon, B.-G., and Chi, D.-Z., J. Non-Cryst. Sol. 137&138 (1991) 467.Google Scholar
17. Antoniadis, H. and Schiff, E.A., Phys. Rev. B 46 (1992) 9482.Google Scholar
18. Han, D., Melcher, D.C., Schiff, E.A., and Silver, M., Phys. Rev. B 48 (1993) 8658.Google Scholar