Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T08:06:25.972Z Has data issue: false hasContentIssue false

Dielectric Morphology and RRAM Resistive Switching Characteristics

Published online by Cambridge University Press:  19 June 2014

G. Bersuker*
Affiliation:
SEMATECH, Inc., Albany, NY 12203, USA
B. Butcher
Affiliation:
SEMATECH, Inc., Albany, NY 12203, USA
D. C. Gilmer
Affiliation:
SEMATECH, Inc., Albany, NY 12203, USA
L. Larcher
Affiliation:
DISMI, Universita di Modena e Reggio Emilia, Italy
A. Padovani
Affiliation:
DISMI, Universita di Modena e Reggio Emilia, Italy
R. Geer
Affiliation:
CNSE, U. Albany, NY 12203, USA
P. D. Kirsch
Affiliation:
SEMATECH, Inc., Albany, NY 12203, USA
Get access

Abstract

The connection between the bi-polar hafnia-based resistive-RAM (RRAM) operational characteristics and dielectric structural properties is considered. Specifically, the atomic-level description of RRAM, which operations involve the repeatable rupture/recreation of a localized conductive path, reveals that its performance is determined by the outcome of the initial forming process defining the structural characteristics of the conductive filament and distribution of the oxygen ions released from the filament region. The post-forming ions spatial distribution in the cell is found to be linked to a degree of dielectric oxygen deficiency, which may either assist or suppress the resistive switching processes.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

LU, C.-Y., Journal of Nanoscience and Nanotechnology, 12, n10, 76047618, (2012).CrossRefGoogle Scholar
WASER, R.; AONO, M., Nature of Materials, 6, 833840, (2007).CrossRefGoogle Scholar
CHEN, A.Ionic Memory Technology”, Solid State Electrochemistry II; Electrodes, Interfaces and Ceramic Membranes. ,In: KHARTON, V. V, (Wiley, 2011), Cap. 1, p. 126.Google Scholar
BERSUKER, G. et al. . Metal oxide resistive memory switching mechanism based on conductive filament properties. Journal or Applied Physics, v. 110, n. 12, p. 124518, (2011).CrossRefGoogle Scholar
BERSUKER, G. et al. ., IEDM, Tech. Dig., 19.6.1–19.6.4, (2010).Google Scholar
BUTCHER, B. et al. ., IEDM, Tech. Dig., (2014).Google Scholar
BERSUKER, G. et al. ., ESSDERC, (2014).Google Scholar
YOUNG-FISHER, K. G. et al. ., IEEE - Electron Device Letters, 34, 750752, (2013).CrossRefGoogle Scholar
VANDELLI, L. et al. ., IEEE-Transactions on Electron Devices, 58, n9, 28782887, (2011).CrossRefGoogle Scholar
MCKENNA, K.; SHLUGER, A., Applied Phsics Letters, 95, n22, 222111, (2009).CrossRefGoogle Scholar
IGLESIAS, V. et al. ., Applied Physics Letters, 97, n26, 262906, (2010).CrossRefGoogle Scholar
LANZA, M. et al. ., Applied Physics Letters, 101, 193502, (2012).CrossRefGoogle Scholar
LARCHER, L. et al. ., IEDM, Tech. Dig., (2012).Google Scholar
ZHENG, J. X. et al. ., Phys. Rev. B, 75, 104112–1, (2007).CrossRefGoogle Scholar
VANDELLI, L. et al. ., IEEE Transactions on Electron Devices, 60, n5, 17541762, (2013).CrossRefGoogle Scholar
MCKENNA, K. P., Modelling Simulation Mater. Sci. Eng., (2014).Google Scholar
BUTCHER, B. et al. ., IEEE - International Memory Workshop (IMW), Monterey, (2013).Google Scholar
BUTCHER, B. Ph.D. Thesis. STATE UNIVERSITY OF NEW YORK AT ALBANY. [S.l.], 3602057, (2013).Google Scholar
SOWINSKA, M. et al. ., Applied Phsyics Letters, 100, 233509, (2012).CrossRefGoogle Scholar
KOVESHNIKOV, S. et al. ., IEDM, Tech. Dig., (2012).Google Scholar
SYU, Y.-E. et al. ., Electron Device letters, IEEE, 34, n7, 864866, (2013).CrossRefGoogle Scholar
SHIMENG, Y.; XIMENG, G.; WONG, H.-S. P., IEEE, International Electron Devices meeting (IEDM), 26.1.1–26.1.4, (2012).Google Scholar
BRADLEY, S. R.; MCKENNA, K. P.; SHLUGER, A. L., Microelec. Eng., 109, 346, (2013).CrossRefGoogle Scholar