Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T09:02:05.123Z Has data issue: false hasContentIssue false

Dielectric Function of “Narrow” Band Gap InN

Published online by Cambridge University Press:  11 February 2011

R. Goldhahn
Affiliation:
Institute of Physics and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau, Germany
S. Shokhovets
Affiliation:
Institute of Physics and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau, Germany
V. Cimalla
Affiliation:
Center for Micro- and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau, Germany
L. Spiess
Affiliation:
Center for Micro- and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau, Germany
G. Ecke
Affiliation:
Center for Micro- and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau, Germany
O. Ambacher
Affiliation:
Center for Micro- and Nanotechnologies, Technical University Ilmenau, 98684 Ilmenau, Germany
J. Furthmüller
Affiliation:
Institut of Solid State Theory and Theoretical Optics, Friedrich Schiller University, 07743 Jena, Germany
F. Bechstedt
Affiliation:
Institut of Solid State Theory and Theoretical Optics, Friedrich Schiller University, 07743 Jena, Germany
H. Lu
Affiliation:
Departartment of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
W. J. Schaff
Affiliation:
Departartment of Electrical and Computer Engineering, Cornell University, Ithaca, NY 14853, U.S.A.
Get access

Abstract

Spectroscopic ellipsometry studies in the energy range from 0.7 up to 5.5 eV were carried out in order to determine the dielectric function (DF) of ‘narrow’ band gap (< 1 eV) single-crystalline InN films grown by molecular beam epitaxy on sapphire substrates. The imaginary part of the DF is characterized by a strong increase immediately above the band gap and then by a nearly constant value up to 4 eV. Pronounced structures above 4 eV are attributed to transitions along the L-M direction in the Brillouin-zone as a comparison with first-principles calculations indicates. In contrast, sputtered layers (band gap ∼1.9 eV) studied for comparison show a completely different spectral shape of the DF. Finally, DF's of high In-content InGaN alloys are presented, providing further evidence that InN is a “narrow” band gap semiconductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Osamura, K., Nakajima, K., Murakami, Y., Shingu, P. S. and Ohtsuki, A., Solid State Commun. 11, 617 (1972);Google Scholar
Osamura, K., Naka, S. and Murakami, Y., J. Appl. Phys. 46, 3432 (1975).Google Scholar
2. Tansley, T.L. and Fowley, C.P., J. Appl. Phys. 59, 3241 (1986).Google Scholar
3. Shamrell, R.T. and Parman, C., Optical Materials 13, 289 (1999).Google Scholar
4. Shen, W. Z. et al., Appl. Phys. Lett. 80, 2063 (2002);Google Scholar
Yang, H. F. et al., J. Appl. Phys. 91, 9803 (2002).Google Scholar
5. Inushima, T., Mamutin, V. V., Vekshin, V.A., Ivanov, S. V., Sakon, T., Motokawa, M. and Ohoya, S., J. Crytal Growth 227–228, 481 (2001).Google Scholar
6. Davydov, V. Yu. et al., phys. stat. sol. (b) 229, R1 (2002).Google Scholar
7. Wu, J. et al., Appl. Phys. Lett. 80, 3967 (2002);Google Scholar
Wu, J. et al., Appl. Phys. Lett. 80, 4741 (2002).Google Scholar
8. Matsuoka, T., Okamoto, H., Nakao, M., Harima, H. and Kurimoto, E., Appl. Phys. Lett. 81, 1246 (2002).Google Scholar
9. Li, F., Mo, D., Cao, C. B., Zhang, Y. L., Chan, H. L. and Choy, C. L., J. Mat. Science: Mat. in Electronics 12, 725 (2001).Google Scholar
10. Goldhahn, R. et al., phys. stat. sol. (a) 177, 107 (2001)Google Scholar
11. Guo, Q., Kato, O., Fujisawa, M. and Yoshida, A., Solid State Commun. 83, 721 (1992);Google Scholar
Guo, Q., Ogawa, H. and Yoshida, A., J. Electron Spectrosc. Relat. Phenom. 79, 9 (1996).Google Scholar
12. Lu, H., Schaff, W. J., Hwang, J., Wu, H., Koley, G. and Eastman, L. F., Appl. Phys. Lett. 79, 1489 (2001).Google Scholar
13. Yamaguchi, S., Kariya, M., Nitta, S., Takeuchi, T., Wetzel, C., Amano, H. and Akasaki, I., J. Appl. Phys. 85, 7682 (1999).Google Scholar
14. Kresse, G. and Furthmüller, J., Comput. Mater. Sci. 6, 15 (1996); Phys. Rev. B 54, 11169 (1996).Google Scholar
15. Rieger, M. M. and Vogl, P., Phys. Rev. B 52, 16567 (1995).Google Scholar
16. Kresse, G. and Joubert, D., Phys. Rev. B 59, 1758 (1999).Google Scholar
17. Adolph, B., Furthmüller, J. and Bechstedt, F., Phys. Rev. B 63, 125108 (2001).Google Scholar
18. Persson, C., Ahuja, R., Ferreira da Silva, A. and Johansson, B., J. Phys.: Condens. Matter 13, 8945 (2001).Google Scholar