Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T08:05:43.211Z Has data issue: false hasContentIssue false

Diamondlike Carbon-Metal Nanocomposite Films for Medical Applications

Published online by Cambridge University Press:  01 February 2011

R. J. Narayan
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245
H. Abernathy
Affiliation:
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332–0245
L. Riester
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
C. J. Berry
Affiliation:
Environmental Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808
R. Brigmon
Affiliation:
Environmental Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808
Get access

Abstract

Silver and platinum were incorporated within diamondlike carbon (DLC) thin films using a multicomponent target pulsed laser deposition process. Transmission electron microscopy of the DLC-silver and DLC-platinum composite films reveals that these films self-assemble into particulate nanocomposite structures that possess a high fraction of sp3-hybridized carbon atoms. DLC-silver-platinum films demonstrated exceptional antimicrobial properties against Staphylococcus and Pseudomonas aeruginosa bacteria.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Printzen, G., Injury-Inter. J. Care Injured 27, 9 (1996).Google Scholar
2. Isiklar, Z. U., Landon, G. C., and Tullos, H. S., Clin. Orthop. Related Res. 299, 173 (1994).Google Scholar
3. Merritt, K., Gaind, A., and Anderson, J. M., J. Biomed. Mater. Res. 39, 422 (1998).Google Scholar
4. Chang, C. C., Merritt, K., J. Biomed. Mater. Res. 26, 197 (1992).Google Scholar
5. Jefferson, K. K., FEMS Microbiology Lett. 236, 163 (2004).Google Scholar
6. Darouiche, R. O., Anti-infective efficacy of silver-coated medical prostheses, Clinical Infectious Diseases, Vol 29 (No. 6), 1999, p 13711377 Google Scholar
7. Stickler, D. J., Biomaterials to prevent nosocomial infections: is silver the gold standard?, Curr. Opinion Infectious Diseases, Vol 13 (No. 4), 2000, p 389393 Google Scholar
8. Oh, K. S., Park, S. H., and Jeong, Y. K., Antimicrobial effects of Ag doped hydroxyapatite synthesized from co-precipitation route, Key Engineering Materials, Vol 264–268 (No. 1–3), 2004, p 21112114 Google Scholar
9. Dowling, D. P., Betts, A. J., Pope, C., McConnell, M. L., Eloy, R., Arnaud, M. N., Surface Coatings Technol. 163, 637 (2003).Google Scholar
10. Lopatin, S., Pennycook, S. J., Narayan, J., and Duscher, G., Appl. Phys Lett. 81, 2728 (2002).Google Scholar
11. Bruley, J., Williams, D. B., Cuomo, J. J., and Pappas, D. P., J. Microscopy (Oxford) 180, 22 (1995).Google Scholar
12. Dekempeneer, E. H. A., Jacobs, R., Smeets, J., Meneve, J., Eersels, L., Blanpain, B., Roos, J., and Oostra, D. J., Thin Solid Films 217, 56 (1992).Google Scholar
13. Bewilogua, K., Dietrich, D., Holzhuter, G., and Weissmantel, C., Phys. Stat. Sol. A 71, 56 (1982).Google Scholar
14. McCulloch, D. G., McKenzie, D. R., and Goringe, C. M., Phys. Rev. B 61, 2349 (2000).Google Scholar
15. Lifshitz, Y., Diamond Related Mater. 5, 388 (1996).Google Scholar
16. Lifshitz, Y., Lempert, G. D., Grossman, E., Avigal, I., Uzansaguy, C., Kalish, R., Kulik, J., Marton, D., and Rabalais, J. W., Diamond Related Mater. 4, 318 (1995).Google Scholar
17. Tay, B. K. and Zhang, P., Thin Solid Films 420, 177 (2002).Google Scholar
18. Uglova, V. V., Anishchik, V. M., Pauleau, Y., Kuleshov, A. K., Thièry, F., Pelletier, J., Dub, S. N., and Rusalsky, D. P., Vacuum 70, 181 (2003).Google Scholar