No CrossRef data available.
Article contents
Diamond Deposition by a Nonequilibrium Plasma Jet
Published online by Cambridge University Press: 15 February 2011
Abstract
A nonequilibrium plasma jet has been used to deposit diamond films on a number of substrates, including silicon, silicon nitride, alumina, and molybdenum. Hydrogen is passed through a glow discharge and expanded through a supersonic nozzle to produce a highly nonequilibrium jet. Methane is added downstream of the nozzle, where it mixes and reacts with the nonequilibrium concentration of hydrogen atoms. The resulting supersonic jet strikes the substrate surface producing a high quality (determined by laser Raman spectrometry) adherent diamond film. Because of the low jet temperature, substrate cooling is unnecessary. Diamond deposition rates have exceeded 2 mg/kWh and I μm/h averaged over 16 cm2 area; good quality films prepared at substrate temperatures below 600 K. have been
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992