Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T02:17:35.317Z Has data issue: false hasContentIssue false

Device Applications of Low-Temperature-Grown GaAs

Published online by Cambridge University Press:  15 February 2011

Frank W. Smith*
Affiliation:
Lincoln Laboratory, Massachusetts Institute of Technology Lexington, MA 02173-9108
Get access

Abstract

Low-temperature-grown (LTG) GaAs is a unique material that has been used in a variety of device applications to achieve record performance. LTG GaAs used as a buffer layer eliminates sidegating and backgating and in GaAs integrated circuits. Record output power density (1.57 W/mm) and superior microwave-switch performance were demonstrated when LTG GaAs was used at a gate insulator in a metal-insulator-semiconductor field-effect transistor. High-speed (0.5 ps) and high-voltage (1 kV) LTG GaAs photoconductive switches have also been demonstrated. Using the same material, researchers have demonstrated highresponsivity (0.1 A/W), wide-bandwidth (∼ 375 GHz) LTG GaAs photodetectors. Devices incorporating LTG GaAs are currently being optimized for systems applications. LTG GaAs technology can enhance system performance and enable new systems for military and commercial applications in the areas of radar, communications, instrumentation, and highspeed computing.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Smith, F. W., Calawa, A. R., Chen, C. L., Manfra, M. J., and Mahoney, L. J., IEEE Electron Device Lett. 9, 77 (1988).10.1109/55.2046Google Scholar
[2]Smith, F. W., Calawa, A. R., Chen, C. L., Mahoney, L. J., Manfra, M. J., and Huang, J. C., in Proc. IEEEICornell Conf. on High Speed Semiconductor Devices and Circuits (IEEE, New York, 1987), p. 229.Google Scholar
[3]Chen, C. L., Smith, F. W., Calawa, A. R., Mahoney, L. J., and Manfra, M. J., IEEE Trans. Electron Devices 36, 1546 (1989).10.1109/16.34211Google Scholar
[4]Smith, F. W., Chen, C. L., Turner, G. W., Finn, M. C., Mahoney, L. J., Mahoney, L. J., Manfra, M. J., and Calawa, A. R., in Technical Digest IEEE International Electron Devices Meeting (IEEE, New York, 1988), p. 838.Google Scholar
[5]Chen, C. L., Smith, F. W., Clifton, B. J., Mahoney, L. J., Manfra, M. J., and Calawa, A. R., IEEE Electron Device Lett. 12, 306 (1991).10.1109/55.82069Google Scholar
[6]Smith, F. W., Chen, C. L., Mahoney, L. J., Manfra, M. J., Temme, D. H., Clifton, B. J., and Calawa, A. R., in IEEE MTT-S International Microwave Symposium Digest (IEEE, Piscataway, NJ, 1991), p. 643.Google Scholar
[7]Chen, Y., Williamson, S., Brock, T., Smith, F. W., and Calawa, A. R., Appl. Phys. Lett. 59, 1984 (1991).Google Scholar
[8]Smith, F. W., Ph. D. thesis, Massachusetts Institute of Technology, 1990; M. Kaminska, E. R. Weber, F. W. Smith, A. R. Calawa, K-M. Yu, R. Leon, and T. George, unpublished.Google Scholar
[9]Warren, A. C., Woodall, J. M., Freeouf, J. L., Grischkowsky, D., Mclnturff, D. T., Melloch, M. R., and Otsuka, N., Appl. Phys. Lett. 57, 1331 (1990).Google Scholar
[10]Barrera, J., in Proc. IEEE/Cornell Conf. on High Speed Semiconductor Devices and Circuits (IEEE, New York, 1975), p. 135.Google Scholar
[11]Eastman, L. F. and Shur, M. S., IEEE Trans. Electron Devices ED-26, 1359 (1979).Google Scholar
[12]Nozaki, T., Ogawa, M., Terao, H., and Wantanabe, H., Inst. Phys. Conf. Ser. No. 24, 46 (1975).Google Scholar
[13]Yamasaki, K., Kato, N., and Hirayama, M., IEEE Trans. Electron Devices ED-32, 2420 (1985).Google Scholar
[14]Patrick, W., Mackie, W. S., Beaumont, S. P., Wilkinson, C. D. W., and Oxley, C. H., IEEE Electron Device Lett. EDL-6, 471 (1985).10.1109/EDL.1985.26196Google Scholar
[15]Yokoyama, K., Tomizawa, M., and Yoshii, A., IEEE Electron Device Lett. EDL-6,536 (1985).Google Scholar
[16]Lin, B. J., Mars, D. E., and Low, T. S., presented at the IEEE 46th Annual Device Research Conf., Boulder, CO, 20–22 June 1988.Google Scholar
[17]Fernandez, N. G., Lightner, M. J., D'Avanzo, D., and Patterson, G., in Proc. of the 12th SOTAPOCS (Electrochemical Society, New York, 1990), vol. 90–15.Google Scholar
[18]Delaney, M. J., Chou, S. S., Larson, L. E., Jensen, J. F., Deakin, D. S., Brown, A. S., Hooper, W. W., Thompson, M. A., McCray, L. G., and Rosenbaum, S. E., IEEE Electron Device Lett. 10, 355 (1989).Google Scholar
[19]Gupta, S., Frankel, F. Y., Valdmanis, J. A., Whitaker, J. F., Mourou, G. A., Smith, F. W., and Calawa, A. R., to be published in Appl. Phys. Lett.Google Scholar
[20]Motet, T., Nees, J., Williamson, S., and Mourou, G., Appl. Phys. Lett. 59, 1455 (1991).Google Scholar