Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-17T18:00:50.119Z Has data issue: false hasContentIssue false

Development of Zirconolite-based Glass-Ceramics for the Conditioning of Actinides

Published online by Cambridge University Press:  21 March 2011

P. Loiseau
Affiliation:
de Chimie Appliquée de l'Etat Solide (UMR CNRS 7574), ENSCP, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France
D. Caurant
Affiliation:
de Chimie Appliquée de l'Etat Solide (UMR CNRS 7574), ENSCP, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France
N. Baffier
Affiliation:
de Chimie Appliquée de l'Etat Solide (UMR CNRS 7574), ENSCP, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France
L. Mazerolles
Affiliation:
Centre d'Etudes de Chimie Métallurgique (CECM, UPR CNRS 2801), 15 rue Georges Urbain, 94407 Vitry-sur-Seine Cedex, France
C. Fillet
Affiliation:
Commissariat à l'Energie Atomique (CEA), Centre d'Etudes de la Vallée du Rhône, DCC/DRRV/SCD/LEBM, BP 171, 30207 Bagnols-sur-Céze, France
Get access

Abstract

Zirconolite (CaZrTi2O7) based glass-ceramics designed for the specific immobilization of plutonium wastes or minor actinides (Np, Am, Cm) from high level radioactive wastes were investigated. To reach an efficient double containment, actinides must be preferentially located in the crystalline phase, which is homogeneously dispersed in a calcium aluminosilicate residual glass. Several heat treatments (between 950° and 1350°C) of a parent glass belonging to the SiO2-Al2O3-CaO system and containing TiO2 and ZrO2 were performed to prepare glass-ceramics. Trivalent minor actinides were simulated introducing Nd2O3 in the glass composition. Electron microscopy, X-ray diffraction (XRD) and thermal analysis have shown that devitrification processes in the bulk and on glass surface are different. They lead to the crystallization of zirconolite in the bulk and to a mixture of titanite (CaTiSiO5) and anorthite (CaAl2Si2O8) near the surface. For heat treatment temperatures greater than or equal to 1250°C, baddeleyite (m-ZrO2) crystals form at the expense of zirconolite in the bulk of glass-ceramics. XRD indicates that the order in zirconolite Ca/Zr planes increases with heating temperature. At the same time, extended defects density decreases.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Donald, I.W., Metcalfe, B.L., Taylor, R.N., J. Mat. Science 32, 5851 (1997)Google Scholar
2. Hayward, P.J., Glass Technol. 29 (4), 122 (1988)Google Scholar
3. Kesson, S.E., Sinclair, W.J., Ringwood, A.E., Nuclear and Chemical Waste Management 4, 259 (1983)Google Scholar
4. Fielding, P.E., White, T.J., J.Mater. Res. 2 (3), 387 (1987)Google Scholar
5. Vance, E.R., Angel, P.J., Begg, B.D., Day, R.A., Mat. Res. Soc. Symp. Proc. 333, 293 (1994)Google Scholar
6. Jostsons, A., Vance, E.R., Mercer, D.J., Oversby, V.M., Mat. Res. Soc. Symp. Proc. 353, 775 (1995)Google Scholar
7. Hart, K.P., Lumpkin, G.R., Giere, R., Williams, C.T., McGlinn, P.J., Payne, T.E., Radiochimica Acta 74, 309 (1996)Google Scholar
8. Begg, B.D., Vance, E.R., Day, R.A., Hambley, M., Coradson, S.D., Mat. Res. Soc. Symp. Proc. 465, 325 (1997)Google Scholar
9. Rossell, H.J., J. Solid State Chem. 99, 38 (1992)Google Scholar
10. Conley, J.G., Kelsey, P.V., Miley, D.V., in Advances in Ceramics (edited by Wicks, G. G. and Ross, W. A., Am. Ceram. Soc. Columbus OH, 1984) vol. 8 p.302 Google Scholar
11. Feng, X., Hahn, W.K., Gong, M., Gong, W., Wang, L., Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries II, 72, 123 (1996)Google Scholar
12. Lin, J.S., Shen, P., J. Non Cryst. Solids 204, 135 (1996)Google Scholar
13. O'Holleran, T.P., Johnson, S.G., Frank, S.M., Meyer, M.K., Noy, M., Wood, E.L., Knecht, D.A., Vinjamuri, K., Staples, B.A., Mat. Res. Soc. Symp. Proc. 465, 1251 (1997)Google Scholar
14. Fillet, C., Marillet, J., Dussossoy, J.L., Pacaud, F., Jacquet-Francillon, N., Phalippou, J., Environmental Issues and Waste Management Technologies in the Ceramic and Nuclear Industries III, 87, 531 (1997)Google Scholar
15. Advocat, T., Fillet, C., Marillet, J., Leturcq, G., Boubals, J.M., Bonnetier, A., Mat. Res. Soc. Proc. SBNWM XXI, 55 (1998)Google Scholar
16. Phase diagrams for ceramists (Am. Ceram. Soc. Columbus, 1964) vol. 1 p. 219 Google Scholar
17. Strnad, Z. in Glass-Ceramic Materials (Elsevier Science Publishers, 1986) p.105 Google Scholar
18. Duan, R.G., Liang, K.M., Gu, S.R., J. Eur. Ceram. Soc. 18, 1729 (1998)Google Scholar
19. Vance, E.R., Ball, C.J., Day, R.A., Smith, K.L., Blackford, M.G., Begg, B.D., Angel, P.J., J. Alloys and Compounds 213/314, 406 (1994)Google Scholar
20. Gatehouse, B., Gray, I.E., Hill, R.J., Rossell, H.J., Acta Cryst. B37, 306 (1981)Google Scholar
21. Chen, S.K., Liu, H. S., J. Mat. Science 29, 2921 (1994)Google Scholar
22. Loiseau, P., Caurant, D., Majerus, O., Baffier, N., Fillet, C. (unpublished results)Google Scholar
23. Rossell, H.J., J. Solid State Chem. 99, 52 (1992)Google Scholar
24. Loiseau, P., Caurant, D., Baffier, N., Fillet, C., Mat. Res. Soc. Symp. Proc. SBNWM XXIV (this issue) (2000)Google Scholar
25. Vance, E.R., Agrawal, D.K., Nuclear and Chemical Waste Management 3, 229 (1982)Google Scholar
26. Vance, E.R., Ball, C.J., Blackford, M.G., Cassidy, D.J., Smith, K.L., J. Nucl. Mater. 175, 58 (1990)Google Scholar
27. White, T.J., Segall, R.L., Hutchinson, J.L., Barry, J.C., Proc. R. Soc. Lond. A392, 343 (1984)Google Scholar