Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T01:56:22.209Z Has data issue: false hasContentIssue false

Development of Switchable “Smart” Biomaterials Using an Environmental Friendly Technology

Published online by Cambridge University Press:  31 January 2011

Telma Barroso
Affiliation:
[email protected], REQUIMTE, FCT, Universidade Nova de Lisboa, Dep. Química, Caparica, Portugal
Raquel Viveiros
Affiliation:
[email protected], REQUIMTE, FCT, Universidade Nova de Lisboa, Dep. Química, Caparica, Portugal
Eunice Costa
Affiliation:
[email protected], REQUIMTE, FCT, Universidade Nova de Lisboa, Dep. Química, Caparica, Portugal
Márcio Temtem
Affiliation:
[email protected], REQUIMTE, FCT, Universidade Nova de Lisboa, Dep. Química, Caparica, Portugal
Teresa Casimiro
Affiliation:
[email protected], REQUIMTE, FCT, Universidade Nova de Lisboa, Dep. Química, Caparica, Portugal
Ana Aguiar-Ricardo
Affiliation:
[email protected], REQUIMTE, FCT, Universidade Nova de Lisboa, Dep. Química, Caparica, Portugal
Get access

Abstract

The possibility of using three dimensional porous networks as microreactors for synthesizing thermoresponsive polymers and hydrogels in a CO2 environment is an important breakthrough in the strategies to prepare smart films, membranes and porous bulky devices that undergo fast reversible changes in surface properties triggered by external stimuli. In situ synthesis of thermoresponsive polymers namely, poly(N-isopropylacrylamide) (PNIPAAm) and poly (N,N-diethylacrylamide) (PDEAAm) within chitosan (CHT), collagen (CLG) and chitosan-collagen (CHT:CLG) blended scaffolds were performed in order to further impregnate with model drugs. The performance of these switchable release devices was evaluated through the study of drug release kinetics as a function of temperature and pH. The same methodology was successfully applied to produce thermoresponsive polysulfone-based membranes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Temtem, M. Casimiro, T. Mano, J.F. and Aguiar-Ricardo, A., J. Supercrit.. Fluids., 43, 542 (2007).Google Scholar
2 Madihally, X. S. V. and H. Matthew, W.T. Biomaterials 20, 1133 (1999)Google Scholar
3 Temtem, M. Casimiro, T. Mano, J. F. and Aguiar-Ricardo, A., Green Chem., 9, 75 (2007)Google Scholar
4 Temtem, M. Pompeu, D. Barroso, T. Fernandes, J. Simões, P.C., Casimiro, T. Botelho do Rego, A.M., Aguiar-Ricardo, A., Green Chem. 11, 638 (2009).Google Scholar
5 Yeo, S.D. and Kiran, E. Biomaterials 18, 287 (2005).Google Scholar
6 Muntó, M., Ventosa, N. Sala, S. Veciana, J. J. Supercrit. Fluids 47, 147 (2008).Google Scholar